Yes the three event types that I defined in the engine.json exist in my
dataset, facet is my primary, I checked that it exists.

I think it is not needed to build again when changing something in the
engine.json, as the file is read in the process but I built it and tried
again and I still have the same error.

What is this example-intrigration? I dont know about this. Where can I find
this script?

2017-06-07 11:11 GMT+02:00 Vaghawan Ojha <[email protected]>:

> Hi,
>
> For me this problem had happened when I had mistaken my primary events.
> The first eventName in the eventName array "eventNames":
> ["facet","view","search"] is primary. There is that event in your data.
>
> Did you make sure, you built the app again when you changed the eventName
> in engine.json?
>
> Also you could varify everything's fine with UR with
> ./example-intrigration.
>
> Thanks
>
> On Wed, Jun 7, 2017 at 2:49 PM, Bruno LEBON <[email protected]> wrote:
>
>> Thanks for your answer.
>>
>> *You could explicitly do *
>>
>>
>> *pio train -- --master spark://localhost:7077 --driver-memory 16G
>> --executor-memory 24G *
>>
>> *and change the spark master url and the memories configuration. And see
>> if that works. *
>>
>> Yes that is the command I use to launch the train, except I am on a
>> cluster, so Spark is not local. Here is mine:
>>  pio train -- --master spark://master:7077 --driver-memory 4g
>> --executor-memory 10g
>>
>> The train works with different datasets, it also works with this dataset
>> when I skip the event type *view*. So my guess is that there is
>> something about this event type, either in the data but the data looks fine
>> to me, or maybe there is a problem when I use more than two types of event
>> (this is the first time I have more than two, however I can't believe that
>> the problem is related the a number of event types).
>>
>> The spelling is the same in the event sent to the eventserver ( *view *)
>> and in the engine.json ( *view *).
>>
>> I am reading the code to figure out where this error comes from.
>>
>>
>>
>> 2017-06-07 10:17 GMT+02:00 Vaghawan Ojha <[email protected]>:
>>
>>> You could explicitly do
>>>
>>> pio train -- --master spark://localhost:7077 --driver-memory 16G
>>> --executor-memory 24G
>>>
>>> and change the spark master url and the memories configuration. And see
>>> if that works.
>>>
>>> Thanks
>>>
>>> On Wed, Jun 7, 2017 at 1:55 PM, Bruno LEBON <[email protected]> wrote:
>>>
>>>> Hi,
>>>>
>>>> Using UR with PIO 0.10 I am trying to train my dataset. In return I get
>>>> the following error:
>>>>
>>>> *...*
>>>> *[INFO] [DataSource] Received events List(facet, view, search)*
>>>> *[INFO] [DataSource] Number of events List(5, 4, 6)*
>>>> *[INFO] [Engine$] org.template.TrainingData does not support data
>>>> sanity check. Skipping check.*
>>>> *[INFO] [Engine$] org.template.PreparedData does not support data
>>>> sanity check. Skipping check.*
>>>> *[INFO] [URAlgorithm] Actions read now creating correlators*
>>>> *[WARN] [TaskSetManager] Lost task 0.0 in stage 56.0 (TID 50,
>>>> ip-172-31-40-139.eu-west-1.com
>>>> <http://ip-172-31-40-139.eu-west-1.com>pute.internal):
>>>> java.lang.NegativeArraySizeException*
>>>> *        at
>>>> org.apache.mahout.math.DenseVector.<init>(DenseVector.java:57)*
>>>> *        at
>>>> org.apache.mahout.sparkbindings.SparkEngine$$anonfun$5.apply(SparkEngine.scala:73)*
>>>> *        at
>>>> org.apache.mahout.sparkbindings.SparkEngine$$anonfun$5.apply(SparkEngine.scala:72)*
>>>> *        at
>>>> org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$20.apply(RDD.scala:710)*
>>>> *        at
>>>> org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$20.apply(RDD.scala:710)*
>>>> *        at
>>>> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)*
>>>> *        at
>>>> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)*
>>>> *        at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)*
>>>> *        at
>>>> org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)*
>>>> *        at org.apache.spark.scheduler.Task.run(Task.scala:89)*
>>>> *        at
>>>> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:227)*
>>>> *        at
>>>> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)*
>>>> *        at
>>>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)*
>>>> *        at java.lang.Thread.run(Thread.java:748)*
>>>>
>>>> *[ERROR] [TaskSetManager] Task 0 in stage 56.0 failed 4 times; aborting
>>>> job*
>>>> *Exception in thread "main" org.apache.spark.SparkException: Job
>>>> aborted due to stage failure: Task 0 in stage 56.0 failed 4 times, most
>>>> recent failure: Lost task 0.3 in stage 56.0 (TID 56,
>>>> ip-172-1-1-1.eu-west-1.compute.internal):
>>>> java.lang.NegativeArraySizeException*
>>>> *        at
>>>> org.apache.mahout.math.DenseVector.<init>(DenseVector.java:57)*
>>>> *        at
>>>> org.apache.mahout.sparkbindings.SparkEngine$$anonfun$5.apply(SparkEngine.scala:73)*
>>>> *        at
>>>> org.apache.mahout.sparkbindings.SparkEngine$$anonfun$5.apply(SparkEngine.scala:72)*
>>>> *        at
>>>> org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$20.apply(RDD.scala:710)*
>>>> *        at
>>>> org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$20.apply(RDD.scala:710)*
>>>> *        at
>>>> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)*
>>>> *        at
>>>> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)*
>>>> *        at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)*
>>>> *        at
>>>> org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)*
>>>> *        at org.apache.spark.scheduler.Task.run(Task.scala:89)*
>>>> *        at
>>>> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:227)*
>>>> *        at
>>>> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)*
>>>> *        at
>>>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)*
>>>> *        at java.lang.Thread.run(Thread.java:748)*
>>>>
>>>> *Driver stacktrace:*
>>>> *        at org.apache.spark.scheduler.DAGScheduler.org
>>>> <http://org.apache.spark.scheduler.DAGScheduler.org>$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1431)*
>>>> *        at
>>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1419)*
>>>> *        at
>>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1418)*
>>>> *        at
>>>> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)*
>>>> *        at
>>>> scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)*
>>>> *        at
>>>> org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1418)*
>>>> *        at
>>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799)*
>>>> *        at
>>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:799)*
>>>> *        at scala.Option.foreach(Option.scala:236)*
>>>> *        at
>>>> org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:799)*
>>>> *        at
>>>> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1640)*
>>>> *        at
>>>> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1599)*
>>>> *        at
>>>> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1588)*
>>>> *        at
>>>> org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)*
>>>> *        at
>>>> org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:620)*
>>>> *        at
>>>> org.apache.spark.SparkContext.runJob(SparkContext.scala:1832)*
>>>> *        at
>>>> org.apache.spark.SparkContext.runJob(SparkContext.scala:1952)*
>>>> *        at
>>>> org.apache.spark.rdd.RDD$$anonfun$reduce$1.apply(RDD.scala:1025)*
>>>> *        at
>>>> org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:150)*
>>>> *        at
>>>> org.apache.spark.rdd.RDDOperationScope$.withScope(RDDOperationScope.scala:111)*
>>>> *        at org.apache.spark.rdd.RDD.withScope(RDD.scala:316)*
>>>> *        at org.apache.spark.rdd.RDD.reduce(RDD.scala:1007)*
>>>> *        at
>>>> org.apache.mahout.sparkbindings.SparkEngine$.numNonZeroElementsPerColumn(SparkEngine.scala:81)*
>>>> *        at
>>>> org.apache.mahout.math.drm.CheckpointedOps.numNonZeroElementsPerColumn(CheckpointedOps.scala:36)*
>>>> *        at org.apache.mahout.math.cf
>>>> <http://org.apache.mahout.math.cf>.SimilarityAnalysis$.sampleDownAndBinarize(SimilarityAnalysis.scala:397)*
>>>> *        at org.apache.mahout.math.cf
>>>> <http://org.apache.mahout.math.cf>.SimilarityAnalysis$$anonfun$cooccurrences$1.apply(SimilarityAnalysis.scala:101)*
>>>> *        at org.apache.mahout.math.cf
>>>> <http://org.apache.mahout.math.cf>.SimilarityAnalysis$$anonfun$cooccurrences$1.apply(SimilarityAnalysis.scala:95)*
>>>> *        at
>>>> scala.collection.IndexedSeqOptimized$class.foreach(IndexedSeqOptimized.scala:33)*
>>>> *        at
>>>> scala.collection.mutable.ArrayOps$ofRef.foreach(ArrayOps.scala:108)*
>>>> *        at org.apache.mahout.math.cf
>>>> <http://org.apache.mahout.math.cf>.SimilarityAnalysis$.cooccurrences(SimilarityAnalysis.scala:95)*
>>>> *        at org.apache.mahout.math.cf
>>>> <http://org.apache.mahout.math.cf>.SimilarityAnalysis$.cooccurrencesIDSs(SimilarityAnalysis.scala:147)*
>>>> *        at org.template.URAlgorithm.calcAll(URAlgorithm.scala:280)*
>>>> *        at org.template.URAlgorithm.train(URAlgorithm.scala:251)*
>>>> *        at org.template.URAlgorithm.train(URAlgorithm.scala:169)*
>>>> *        at
>>>> org.apache.predictionio.controller.P2LAlgorithm.trainBase(P2LAlgorithm.scala:49)*
>>>> *        at
>>>> org.apache.predictionio.controller.Engine$$anonfun$18.apply(Engine.scala:692)*
>>>> *        at
>>>> org.apache.predictionio.controller.Engine$$anonfun$18.apply(Engine.scala:692)*
>>>> *        at
>>>> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)*
>>>> *        at
>>>> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)*
>>>> *        at scala.collection.immutable.List.foreach(List.scala:318)*
>>>> *        at
>>>> scala.collection.TraversableLike$class.map(TraversableLike.scala:244)*
>>>> *        at
>>>> scala.collection.AbstractTraversable.map(Traversable.scala:105)*
>>>> *        at
>>>> org.apache.predictionio.controller.Engine$.train(Engine.scala:692)*
>>>> *        at
>>>> org.apache.predictionio.controller.Engine.train(Engine.scala:177)*
>>>> *        at
>>>> org.apache.predictionio.workflow.CoreWorkflow$.runTrain(CoreWorkflow.scala:67)*
>>>> *        at
>>>> org.apache.predictionio.workflow.CreateWorkflow$.main(CreateWorkflow.scala:250)*
>>>> *        at
>>>> org.apache.predictionio.workflow.CreateWorkflow.main(CreateWorkflow.scala)*
>>>> *        at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)*
>>>> *        at
>>>> sun.reflect.NativeMethodAccessorImpl.invoke(NativeMethodAccessorImpl.java:62)*
>>>> *        at
>>>> sun.reflect.DelegatingMethodAccessorImpl.invoke(DelegatingMethodAccessorImpl.java:43)*
>>>> *        at java.lang.reflect.Method.invoke(Method.java:498)*
>>>> *        at
>>>> org.apache.spark.deploy.SparkSubmit$.org$apache$spark$deploy$SparkSubmit$$runMain(SparkSubmit.scala:731)*
>>>> *        at
>>>> org.apache.spark.deploy.SparkSubmit$.doRunMain$1(SparkSubmit.scala:181)*
>>>> *        at
>>>> org.apache.spark.deploy.SparkSubmit$.submit(SparkSubmit.scala:206)*
>>>> *        at
>>>> org.apache.spark.deploy.SparkSubmit$.main(SparkSubmit.scala:121)*
>>>> *        at org.apache.spark.deploy.SparkSubmit.main(SparkSubmit.scala)*
>>>> *Caused by: java.lang.NegativeArraySizeException*
>>>> *        at
>>>> org.apache.mahout.math.DenseVector.<init>(DenseVector.java:57)*
>>>> *        at
>>>> org.apache.mahout.sparkbindings.SparkEngine$$anonfun$5.apply(SparkEngine.scala:73)*
>>>> *        at
>>>> org.apache.mahout.sparkbindings.SparkEngine$$anonfun$5.apply(SparkEngine.scala:72)*
>>>> *        at
>>>> org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$20.apply(RDD.scala:710)*
>>>> *        at
>>>> org.apache.spark.rdd.RDD$$anonfun$mapPartitions$1$$anonfun$apply$20.apply(RDD.scala:710)*
>>>> *        at
>>>> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)*
>>>> *        at
>>>> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:306)*
>>>> *        at org.apache.spark.rdd.RDD.iterator(RDD.scala:270)*
>>>> *        at
>>>> org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:66)*
>>>> *        at org.apache.spark.scheduler.Task.run(Task.scala:89)*
>>>> *        at
>>>> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:227)*
>>>> *        at
>>>> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142)*
>>>> *        at
>>>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617)*
>>>> *        at java.lang.Thread.run(Thread.java:748)*
>>>>
>>>>
>>>> Now usually this message NegativeArraySizeException tells me that one
>>>> of the events defined in engine.json doesn't exist in my dataset. However
>>>> this is not the case here, my three events are present in my dataset. Here
>>>> the proves:
>>>> http://x.x.x.x:7070/events.json?accessKey=df8ef7dd-0165-4b6f
>>>> -a008-d1550adbb3df&startTime=2017-06-2T0:0:00.321Z&limit=1&event=facet
>>>>
>>>> [{"eventId":"AYDE4TYMjU2dFGWVAYyUYwAAAVx5_afdpSyQHw_eNT0","event":"facet","entityType":"user","entityId":"92ec6a38-9fee-4c99-92a5-46677ad9ca48","targetEntityType":"item","targetEntityId":"alfa-romeo-marque","properties":{},"eventTime":"2017-06-05T20:41:25.725Z","creationTime":"2017-06-05T20:41:25.725Z"}]
>>>>
>>>> http://x.x.x.x:7070/events.json?accessKey=df8ef7dd-0165-4b6f-a008-d1550adbb3df&startTime=2017-06-2T0:0:00.321Z&limit=1&event=view
>>>>
>>>> [{"eventId":"IjuMNR7h40l_sylo-uqEsAAAAVxoIcPqnumP2B_qWAk","event":"view","entityType":"user","entityId":"bbc5bd25-b1ac-41e0-b771-43fe65a8827e","targetEntityType":"item","targetEntityId":"citroen-marque","properties":{},"eventTime":"2017-06-02T09:27:42.314Z","creationTime":"2017-06-02T09:27:42.314Z"}]
>>>>
>>>> http://x.x.x.x:7070/events.json?accessKey=df8ef7dd-0165-4b6f-a008-d1550adbb3df&startTime=2017-06-2T0:0:00.321Z&limit=1&event=search
>>>>
>>>> [{"eventId":"AI6NF05NJa3fP2bRpKUxAwAAAVxymnYYjm6nNt3TsGY","event":"search","entityType":"user","entityId":"b2c77901-0824-4583-9999-3cd56c1f34c9","targetEntityType":"item","targetEntityId":"peugeot-marque","properties":{},"eventTime":"2017-06-04T10:15:44.408Z","creationTime":"2017-06-04T10:15:44.408Z"}]
>>>>
>>>>
>>>> I selected only one event per type but there are more.
>>>>
>>>>
>>>> If I keep only the event types *facet *and *search*, then it works, the 
>>>> train succeeds and I have my model. However as soon as I add the event 
>>>> type *view*, it fails. I tried putting *view *as a primary event and it 
>>>> doesnt change anything. Not sure why it would change anything but I tried 
>>>> anyway.
>>>>
>>>>
>>>> Here is my engine.json:
>>>>
>>>> *{
>>>>   "comment":"",
>>>>   "id": "car",
>>>>   "description": "settings",
>>>>   "engineFactory": "org.template.RecommendationEngine",
>>>>   "datasource": {
>>>>     "params" : {
>>>>       "name": "sample-handmade-data.txt",
>>>>       "appName": "piourcar",
>>>>       "eventNames": ["facet","view","search"]
>>>>     }
>>>>   },
>>>>   "sparkConf": {
>>>>     "spark.serializer": "org.apache.spark.serializer.KryoSerializer",
>>>>     "spark.kryo.registrator": "org.apache.mahout.sparkbindings.io 
>>>> <http://sparkbindings.io>.MahoutKryoRegistrator",
>>>>     "spark.kryo.referenceTracking": "false",
>>>>     "spark.kryoserializer.buffer": "300m",
>>>>     "es.index.auto.create": "true",
>>>>     "es.nodes":"espionode1:9200,espionode2:9200,espionode3:9200"
>>>>   },
>>>> "algorithms": [
>>>>     {
>>>>       "name": "ur",
>>>>       "params": {
>>>>         "appName": "piourcar",
>>>>         "indexName": "urindex_car",
>>>>         "typeName": "items",
>>>>         "eventNames": ["facet","view","search"],
>>>>         "blacklistEvents": [],
>>>>         "maxEventsPerEventType": 50000,
>>>>         "maxCorrelatorsPerEventType": 100,
>>>>         "maxQueryEvents": 10,
>>>>         "num": 5,
>>>>         "userBias": 2,
>>>>         "returnSelf": true
>>>>       }
>>>>     }
>>>>   ]
>>>> }*
>>>>
>>>> Thanks in advance for your help, regards,
>>>> Bruno
>>>>
>>>>
>>>>
>>>>
>>>>
>>>>
>>>
>>
>

Reply via email to