And when I use sparksubmit script, I get the following error: py4j.protocol.Py4JJavaError: An error occurred while calling o26.trainKMeansModel. : org.apache.spark.SparkException: Job aborted due to stage failure: All masters are unresponsive! Giving up. at org.apache.spark.scheduler.DAGScheduler.org $apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1049) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1033) at org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1031) at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) at org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1031) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:635) at org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:635) at scala.Option.foreach(Option.scala:236) at org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:635) at org.apache.spark.scheduler.DAGSchedulerEventProcessActor$$anonfun$receive$2.applyOrElse(DAGScheduler.scala:1234) at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498) at akka.actor.ActorCell.invoke(ActorCell.scala:456) at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237) at akka.dispatch.Mailbox.run(Mailbox.scala:219) at akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386) at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260) at scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339) at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979) at scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)
My spark submit code is conf = SparkConf().set("spark.executor.memory", "32G").set("spark.akka.frameSize", "1000") sc = SparkContext(conf = conf) rdd = sc.parallelize(matrix,5) from pyspark.mllib.clustering import KMeans from math import sqrt clusters = KMeans.train(rdd, 5, maxIterations=2,runs=2, initializationMode="random") def error(point): center = clusters.centers[clusters.predict(point)] return sqrt(sum([x**2 for x in (point - center)])) WSSSE = rdd.map(lambda point: error(point)).reduce(lambda x, y: x + y) print "Within Set Sum of Squared Error = " + str(WSSSE) Which is executed as following: spark-submit --master $SPARKURL clustering_example.py --executor-memory 32G --driver-memory 60G On Sun, Sep 14, 2014 at 10:47 AM, Chengi Liu <chengi.liu...@gmail.com> wrote: > How? Example please.. > Also, if I am running this in pyspark shell.. how do i configure > spark.akka.frameSize ?? > > > On Sun, Sep 14, 2014 at 7:43 AM, Akhil Das <ak...@sigmoidanalytics.com> > wrote: > >> When the data size is huge, you better of use the torrentBroadcastFactory. >> >> Thanks >> Best Regards >> >> On Sun, Sep 14, 2014 at 2:54 PM, Chengi Liu <chengi.liu...@gmail.com> >> wrote: >> >>> Specifically the error I see when I try to operate on rdd created by >>> sc.parallelize method >>> : org.apache.spark.SparkException: Job aborted due to stage failure: >>> Serialized task 12:12 was 12062263 bytes which exceeds spark.akka.frameSize >>> (10485760 bytes). Consider using broadcast variables for large values. >>> >>> On Sun, Sep 14, 2014 at 2:20 AM, Chengi Liu <chengi.liu...@gmail.com> >>> wrote: >>> >>>> Hi, >>>> I am trying to create an rdd out of large matrix.... sc.parallelize >>>> suggest to use broadcast >>>> But when I do >>>> >>>> sc.broadcast(data) >>>> I get this error: >>>> >>>> Traceback (most recent call last): >>>> File "<stdin>", line 1, in <module> >>>> File "/usr/common/usg/spark/1.0.2/python/pyspark/context.py", line >>>> 370, in broadcast >>>> pickled = pickleSer.dumps(value) >>>> File "/usr/common/usg/spark/1.0.2/python/pyspark/serializers.py", >>>> line 279, in dumps >>>> def dumps(self, obj): return cPickle.dumps(obj, 2) >>>> SystemError: error return without exception set >>>> Help? >>>> >>>> >>> >> >