Any suggestions.. I am really blocked on this one

On Sun, Sep 14, 2014 at 2:43 PM, Chengi Liu <chengi.liu...@gmail.com> wrote:

> And when I use sparksubmit script, I get the following error:
>
> py4j.protocol.Py4JJavaError: An error occurred while calling
> o26.trainKMeansModel.
> : org.apache.spark.SparkException: Job aborted due to stage failure: All
> masters are unresponsive! Giving up.
> at org.apache.spark.scheduler.DAGScheduler.org
> $apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1049)
> at
> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1033)
> at
> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1031)
> at
> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
> at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
> at
> org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1031)
> at
> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:635)
> at
> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:635)
> at scala.Option.foreach(Option.scala:236)
> at
> org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:635)
> at
> org.apache.spark.scheduler.DAGSchedulerEventProcessActor$$anonfun$receive$2.applyOrElse(DAGScheduler.scala:1234)
> at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498)
> at akka.actor.ActorCell.invoke(ActorCell.scala:456)
> at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237)
> at akka.dispatch.Mailbox.run(Mailbox.scala:219)
> at
> akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386)
> at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260)
> at
> scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339)
> at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979)
> at
> scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107)
>
>
> My spark submit code is
>
> conf = SparkConf().set("spark.executor.memory",
> "32G").set("spark.akka.frameSize", "1000")
> sc = SparkContext(conf = conf)
> rdd = sc.parallelize(matrix,5)
>
> from pyspark.mllib.clustering import KMeans
> from math import sqrt
> clusters = KMeans.train(rdd, 5, maxIterations=2,runs=2,
> initializationMode="random")
> def error(point):
>     center = clusters.centers[clusters.predict(point)]
>     return sqrt(sum([x**2 for x in (point - center)]))
>
> WSSSE = rdd.map(lambda point: error(point)).reduce(lambda x, y: x + y)
> print "Within Set Sum of Squared Error = " + str(WSSSE)
>
> Which is executed as following:
> spark-submit --master $SPARKURL clustering_example.py  --executor-memory
> 32G  --driver-memory 60G
>
> On Sun, Sep 14, 2014 at 10:47 AM, Chengi Liu <chengi.liu...@gmail.com>
> wrote:
>
>> How? Example please..
>> Also, if I am running this in pyspark shell.. how do i configure
>> spark.akka.frameSize ??
>>
>>
>> On Sun, Sep 14, 2014 at 7:43 AM, Akhil Das <ak...@sigmoidanalytics.com>
>> wrote:
>>
>>> When the data size is huge, you better of use the
>>> torrentBroadcastFactory.
>>>
>>> Thanks
>>> Best Regards
>>>
>>> On Sun, Sep 14, 2014 at 2:54 PM, Chengi Liu <chengi.liu...@gmail.com>
>>> wrote:
>>>
>>>> Specifically the error I see when I try to operate on rdd created by
>>>> sc.parallelize method
>>>> : org.apache.spark.SparkException: Job aborted due to stage failure:
>>>> Serialized task 12:12 was 12062263 bytes which exceeds spark.akka.frameSize
>>>> (10485760 bytes). Consider using broadcast variables for large values.
>>>>
>>>> On Sun, Sep 14, 2014 at 2:20 AM, Chengi Liu <chengi.liu...@gmail.com>
>>>> wrote:
>>>>
>>>>> Hi,
>>>>>    I am trying to create an rdd out of large matrix.... sc.parallelize
>>>>> suggest to use broadcast
>>>>> But when I do
>>>>>
>>>>> sc.broadcast(data)
>>>>> I get this error:
>>>>>
>>>>> Traceback (most recent call last):
>>>>>   File "<stdin>", line 1, in <module>
>>>>>   File "/usr/common/usg/spark/1.0.2/python/pyspark/context.py", line
>>>>> 370, in broadcast
>>>>>     pickled = pickleSer.dumps(value)
>>>>>   File "/usr/common/usg/spark/1.0.2/python/pyspark/serializers.py",
>>>>> line 279, in dumps
>>>>>     def dumps(self, obj): return cPickle.dumps(obj, 2)
>>>>> SystemError: error return without exception set
>>>>> Help?
>>>>>
>>>>>
>>>>
>>>
>>
>

Reply via email to