Any suggestions.. I am really blocked on this one On Sun, Sep 14, 2014 at 2:43 PM, Chengi Liu <chengi.liu...@gmail.com> wrote:
> And when I use sparksubmit script, I get the following error: > > py4j.protocol.Py4JJavaError: An error occurred while calling > o26.trainKMeansModel. > : org.apache.spark.SparkException: Job aborted due to stage failure: All > masters are unresponsive! Giving up. > at org.apache.spark.scheduler.DAGScheduler.org > $apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1049) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1033) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1031) > at > scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) > at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) > at > org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1031) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:635) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:635) > at scala.Option.foreach(Option.scala:236) > at > org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:635) > at > org.apache.spark.scheduler.DAGSchedulerEventProcessActor$$anonfun$receive$2.applyOrElse(DAGScheduler.scala:1234) > at akka.actor.ActorCell.receiveMessage(ActorCell.scala:498) > at akka.actor.ActorCell.invoke(ActorCell.scala:456) > at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:237) > at akka.dispatch.Mailbox.run(Mailbox.scala:219) > at > akka.dispatch.ForkJoinExecutorConfigurator$AkkaForkJoinTask.exec(AbstractDispatcher.scala:386) > at scala.concurrent.forkjoin.ForkJoinTask.doExec(ForkJoinTask.java:260) > at > scala.concurrent.forkjoin.ForkJoinPool$WorkQueue.runTask(ForkJoinPool.java:1339) > at scala.concurrent.forkjoin.ForkJoinPool.runWorker(ForkJoinPool.java:1979) > at > scala.concurrent.forkjoin.ForkJoinWorkerThread.run(ForkJoinWorkerThread.java:107) > > > My spark submit code is > > conf = SparkConf().set("spark.executor.memory", > "32G").set("spark.akka.frameSize", "1000") > sc = SparkContext(conf = conf) > rdd = sc.parallelize(matrix,5) > > from pyspark.mllib.clustering import KMeans > from math import sqrt > clusters = KMeans.train(rdd, 5, maxIterations=2,runs=2, > initializationMode="random") > def error(point): > center = clusters.centers[clusters.predict(point)] > return sqrt(sum([x**2 for x in (point - center)])) > > WSSSE = rdd.map(lambda point: error(point)).reduce(lambda x, y: x + y) > print "Within Set Sum of Squared Error = " + str(WSSSE) > > Which is executed as following: > spark-submit --master $SPARKURL clustering_example.py --executor-memory > 32G --driver-memory 60G > > On Sun, Sep 14, 2014 at 10:47 AM, Chengi Liu <chengi.liu...@gmail.com> > wrote: > >> How? Example please.. >> Also, if I am running this in pyspark shell.. how do i configure >> spark.akka.frameSize ?? >> >> >> On Sun, Sep 14, 2014 at 7:43 AM, Akhil Das <ak...@sigmoidanalytics.com> >> wrote: >> >>> When the data size is huge, you better of use the >>> torrentBroadcastFactory. >>> >>> Thanks >>> Best Regards >>> >>> On Sun, Sep 14, 2014 at 2:54 PM, Chengi Liu <chengi.liu...@gmail.com> >>> wrote: >>> >>>> Specifically the error I see when I try to operate on rdd created by >>>> sc.parallelize method >>>> : org.apache.spark.SparkException: Job aborted due to stage failure: >>>> Serialized task 12:12 was 12062263 bytes which exceeds spark.akka.frameSize >>>> (10485760 bytes). Consider using broadcast variables for large values. >>>> >>>> On Sun, Sep 14, 2014 at 2:20 AM, Chengi Liu <chengi.liu...@gmail.com> >>>> wrote: >>>> >>>>> Hi, >>>>> I am trying to create an rdd out of large matrix.... sc.parallelize >>>>> suggest to use broadcast >>>>> But when I do >>>>> >>>>> sc.broadcast(data) >>>>> I get this error: >>>>> >>>>> Traceback (most recent call last): >>>>> File "<stdin>", line 1, in <module> >>>>> File "/usr/common/usg/spark/1.0.2/python/pyspark/context.py", line >>>>> 370, in broadcast >>>>> pickled = pickleSer.dumps(value) >>>>> File "/usr/common/usg/spark/1.0.2/python/pyspark/serializers.py", >>>>> line 279, in dumps >>>>> def dumps(self, obj): return cPickle.dumps(obj, 2) >>>>> SystemError: error return without exception set >>>>> Help? >>>>> >>>>> >>>> >>> >> >