Hi, While testing SparkSQL on top of our Hive metastore, I am getting some java.lang.ArrayIndexOutOfBoundsException while reusing a cached RDD table.
Basically, I have a table "mtable" partitioned by some "date" field in hive and below is the scala code I am running in spark-shell: val sqlContext = new org.apache.spark.sql.hive.HiveContext(sc); val rdd_mtable = sqlContext.sql("select * from mtable where date=20141028"); rdd_mtable.registerTempTable("rdd_mtable"); sqlContext.cacheTable("rdd_mtable"); sqlContext.sql("select count(*) from rdd_mtable").collect(); <-- OK sqlContext.sql("select count(*) from rdd_mtable").collect(); <-- Exception So the first collect() is working just fine, however running the second collect() which I expect use the cached RDD throws some java.lang.ArrayIndexOutOfBoundsException, see the backtrace at the end of this email. It seems the columnar traversal is crashing for some reasons. FYI, I am using spark ToT (234de9232bcfa212317a8073c4a82c3863b36b14). java.lang.ArrayIndexOutOfBoundsException: 14 at org.apache.spark.sql.catalyst.expressions.GenericRow.apply(Row.scala:142) at org.apache.spark.sql.catalyst.expressions.BoundReference.eval(BoundAttribute.scala:37) at org.apache.spark.sql.catalyst.expressions.Expression.n2(Expression.scala:108) at org.apache.spark.sql.catalyst.expressions.Add.eval(arithmetic.scala:89) at org.apache.spark.sql.columnar.InMemoryRelation$$anonfun$computeSizeInBytes$1.apply(InMemoryColumnarTableScan.scala:66) at org.apache.spark.sql.columnar.InMemoryRelation$$anonfun$computeSizeInBytes$1.apply(InMemoryColumnarTableScan.scala:66) at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244) at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244) at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) at scala.collection.TraversableLike$class.map(TraversableLike.scala:244) at scala.collection.AbstractTraversable.map(Traversable.scala:105) at org.apache.spark.sql.columnar.InMemoryRelation.computeSizeInBytes(InMemoryColumnarTableScan.scala:66) at org.apache.spark.sql.columnar.InMemoryRelation.statistics(InMemoryColumnarTableScan.scala:87) at org.apache.spark.sql.columnar.InMemoryRelation.statisticsToBePropagated(InMemoryColumnarTableScan.scala:73) at org.apache.spark.sql.columnar.InMemoryRelation.withOutput(InMemoryColumnarTableScan.scala:147) at org.apache.spark.sql.CacheManager$$anonfun$useCachedData$1$$anonfun$applyOrElse$1.apply(CacheManager.scala:122) at org.apache.spark.sql.CacheManager$$anonfun$useCachedData$1$$anonfun$applyOrElse$1.apply(CacheManager.scala:122) at scala.Option.map(Option.scala:145) at org.apache.spark.sql.CacheManager$$anonfun$useCachedData$1.applyOrElse(CacheManager.scala:122) at org.apache.spark.sql.CacheManager$$anonfun$useCachedData$1.applyOrElse(CacheManager.scala:119) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:144) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:162) at scala.collection.Iterator$$anon$11.next(Iterator.scala:328) at scala.collection.Iterator$class.foreach(Iterator.scala:727) at scala.collection.AbstractIterator.foreach(Iterator.scala:1157) at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48) at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103) at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47) at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273) at scala.collection.AbstractIterator.to(Iterator.scala:1157) at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265) at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157) at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252) at scala.collection.AbstractIterator.toArray(Iterator.scala:1157) at org.apache.spark.sql.catalyst.trees.TreeNode.transformChildrenDown(TreeNode.scala:191) at org.apache.spark.sql.catalyst.trees.TreeNode.transformDown(TreeNode.scala:147) at org.apache.spark.sql.CacheManager$class.useCachedData(CacheManager.scala:119) at org.apache.spark.sql.SQLContext.useCachedData(SQLContext.scala:49) at org.apache.spark.sql.SQLContext$QueryExecution.withCachedData$lzycompute(SQLContext.scala:376) at org.apache.spark.sql.SQLContext$QueryExecution.withCachedData(SQLContext.scala:376) at org.apache.spark.sql.SQLContext$QueryExecution.optimizedPlan$lzycompute(SQLContext.scala:377) at org.apache.spark.sql.SQLContext$QueryExecution.optimizedPlan(SQLContext.scala:377) at org.apache.spark.sql.SQLContext$QueryExecution.sparkPlan$lzycompute(SQLContext.scala:382) at org.apache.spark.sql.SQLContext$QueryExecution.sparkPlan(SQLContext.scala:380) at org.apache.spark.sql.SQLContext$QueryExecution.executedPlan$lzycompute(SQLContext.scala:386) at org.apache.spark.sql.SQLContext$QueryExecution.executedPlan(SQLContext.scala:386) Thanks,