Thanks Sean. I guess Cloudera Manager has parameters executor_total_max_heapsize and worker_max_heapsize which point to the parameters you mentioned above.
How much should that cushon between the jvm heap size and yarn memory limit be? I tried setting jvm memory to 20g and yarn to 24g, but it gave the same error as above. Then, I removed the "--executor-memory" clause *spark-submit --class ConnectedComponentsTest --master yarn-cluster --num-executors 7 --executor-cores 1 target/scala-2.10/connectedcomponentstest_2.10-1.0.jar* That is not giving GC, Out of memory exception 15/01/14 21:20:33 WARN channel.DefaultChannelPipeline: An exception was thrown by a user handler while handling an exception event ([id: 0x362d65d4, /10.1.1.33:35463 => /10.1.1.73:43389] EXCEPTION: java.lang.OutOfMemoryError: GC overhead limit exceeded) java.lang.OutOfMemoryError: GC overhead limit exceeded at java.lang.Object.clone(Native Method) at akka.util.CompactByteString$.apply(ByteString.scala:410) at akka.util.ByteString$.apply(ByteString.scala:22) at akka.remote.transport.netty.TcpHandlers$class.onMessage(TcpSupport.scala:45) at akka.remote.transport.netty.TcpServerHandler.onMessage(TcpSupport.scala:57) at akka.remote.transport.netty.NettyServerHelpers$class.messageReceived(NettyHelpers.scala:43) at akka.remote.transport.netty.ServerHandler.messageReceived(NettyTransport.scala:179) at org.jboss.netty.channel.Channels.fireMessageReceived(Channels.java:296) at org.jboss.netty.handler.codec.frame.FrameDecoder.unfoldAndFireMessageReceived(FrameDecoder.java:462) at org.jboss.netty.handler.codec.frame.FrameDecoder.callDecode(FrameDecoder.java:443) at org.jboss.netty.handler.codec.frame.FrameDecoder.messageReceived(FrameDecoder.java:303) at org.jboss.netty.channel.Channels.fireMessageReceived(Channels.java:268) at org.jboss.netty.channel.Channels.fireMessageReceived(Channels.java:255) at org.jboss.netty.channel.socket.nio.NioWorker.read(NioWorker.java:88) at org.jboss.netty.channel.socket.nio.AbstractNioWorker.process(AbstractNioWorker.java:109) at org.jboss.netty.channel.socket.nio.AbstractNioSelector.run(AbstractNioSelector.java:312) at org.jboss.netty.channel.socket.nio.AbstractNioWorker.run(AbstractNioWorker.java:90) at org.jboss.netty.channel.socket.nio.NioWorker.run(NioWorker.java:178) at java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) at java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) at java.lang.Thread.run(Thread.java:745) 15/01/14 21:20:33 ERROR util.Utils: Uncaught exception in thread SparkListenerBus java.lang.OutOfMemoryError: GC overhead limit exceeded at scala.collection.mutable.ListBuffer.$plus$eq(ListBuffer.scala:168) at scala.collection.mutable.ListBuffer.$plus$eq(ListBuffer.scala:45) at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244) at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244) at scala.collection.immutable.List.foreach(List.scala:318) at scala.collection.TraversableLike$class.map(TraversableLike.scala:244) at scala.collection.AbstractTraversable.map(Traversable.scala:105) at org.json4s.JsonDSL$class.seq2jvalue(JsonDSL.scala:68) at org.json4s.JsonDSL$.seq2jvalue(JsonDSL.scala:61) at org.apache.spark.util.JsonProtocol$$anonfun$jobStartToJson$3.apply(JsonProtocol.scala:127) at org.apache.spark.util.JsonProtocol$$anonfun$jobStartToJson$3.apply(JsonProtocol.scala:127) at org.json4s.JsonDSL$class.pair2jvalue(JsonDSL.scala:79) at org.json4s.JsonDSL$.pair2jvalue(JsonDSL.scala:61) at org.apache.spark.util.JsonProtocol$.jobStartToJson(JsonProtocol.scala:127) at org.apache.spark.util.JsonProtocol$.sparkEventToJson(JsonProtocol.scala:59) at org.apache.spark.scheduler.EventLoggingListener.logEvent(EventLoggingListener.scala:92) at org.apache.spark.scheduler.EventLoggingListener.onJobStart(EventLoggingListener.scala:118) at org.apache.spark.scheduler.SparkListenerBus$$anonfun$postToAll$3.apply(SparkListenerBus.scala:50) at org.apache.spark.scheduler.SparkListenerBus$$anonfun$postToAll$3.apply(SparkListenerBus.scala:50) at org.apache.spark.scheduler.SparkListenerBus$$anonfun$foreachListener$1.apply(SparkListenerBus.scala:83) at org.apache.spark.scheduler.SparkListenerBus$$anonfun$foreachListener$1.apply(SparkListenerBus.scala:81) at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) at org.apache.spark.scheduler.SparkListenerBus$class.foreachListener(SparkListenerBus.scala:81) at org.apache.spark.scheduler.SparkListenerBus$class.postToAll(SparkListenerBus.scala:50) at org.apache.spark.scheduler.LiveListenerBus.postToAll(LiveListenerBus.scala:32) at org.apache.spark.scheduler.LiveListenerBus$$anon$1$$anonfun$run$1$$anonfun$apply$mcV$sp$1.apply(LiveListenerBus.scala:56) at org.apache.spark.scheduler.LiveListenerBus$$anon$1$$anonfun$run$1$$anonfun$apply$mcV$sp$1.apply(LiveListenerBus.scala:56) at scala.Option.foreach(Option.scala:236) at org.apache.spark.scheduler.LiveListenerBus$$anon$1$$anonfun$run$1.apply$mcV$sp(LiveListenerBus.scala:56) at org.apache.spark.scheduler.LiveListenerBus$$anon$1$$anonfun$run$1.apply(LiveListenerBus.scala:47) at org.apache.spark.scheduler.LiveListenerBus$$anon$1$$anonfun$run$1.apply(LiveListenerBus.scala:47) Exception in thread "SparkListenerBus" java.lang.OutOfMemoryError: GC overhead limit exceeded at scala.collection.mutable.ListBuffer.$plus$eq(ListBuffer.scala:168) at scala.collection.mutable.ListBuffer.$plus$eq(ListBuffer.scala:45) at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244) at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244) at scala.collection.immutable.List.foreach(List.scala:318) at scala.collection.TraversableLike$class.map(TraversableLike.scala:244) at scala.collection.AbstractTraversable.map(Traversable.scala:105) at org.json4s.JsonDSL$class.seq2jvalue(JsonDSL.scala:68) at org.json4s.JsonDSL$.seq2jvalue(JsonDSL.scala:61) at org.apache.spark.util.JsonProtocol$$anonfun$jobStartToJson$3.apply(JsonProtocol.scala:127) at org.apache.spark.util.JsonProtocol$$anonfun$jobStartToJson$3.apply(JsonProtocol.scala:127) at org.json4s.JsonDSL$class.pair2jvalue(JsonDSL.scala:79) at org.json4s.JsonDSL$.pair2jvalue(JsonDSL.scala:61) at org.apache.spark.util.JsonProtocol$.jobStartToJson(JsonProtocol.scala:127) at org.apache.spark.util.JsonProtocol$.sparkEventToJson(JsonProtocol.scala:59) at org.apache.spark.scheduler.EventLoggingListener.logEvent(EventLoggingListener.scala:92) at org.apache.spark.scheduler.EventLoggingListener.onJobStart(EventLoggingListener.scala:118) at org.apache.spark.scheduler.SparkListenerBus$$anonfun$postToAll$3.apply(SparkListenerBus.scala:50) at org.apache.spark.scheduler.SparkListenerBus$$anonfun$postToAll$3.apply(SparkListenerBus.scala:50) at org.apache.spark.scheduler.SparkListenerBus$$anonfun$foreachListener$1.apply(SparkListenerBus.scala:83) at org.apache.spark.scheduler.SparkListenerBus$$anonfun$foreachListener$1.apply(SparkListenerBus.scala:81) at scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) at org.apache.spark.scheduler.SparkListenerBus$class.foreachListener(SparkListenerBus.scala:81) at org.apache.spark.scheduler.SparkListenerBus$class.postToAll(SparkListenerBus.scala:50) at org.apache.spark.scheduler.LiveListenerBus.postToAll(LiveListenerBus.scala:32) at org.apache.spark.scheduler.LiveListenerBus$$anon$1$$anonfun$run$1$$anonfun$apply$mcV$sp$1.apply(LiveListenerBus.scala:56) at org.apache.spark.scheduler.LiveListenerBus$$anon$1$$anonfun$run$1$$anonfun$apply$mcV$sp$1.apply(LiveListenerBus.scala:56) at scala.Option.foreach(Option.scala:236) at org.apache.spark.scheduler.LiveListenerBus$$anon$1$$anonfun$run$1.apply$mcV$sp(LiveListenerBus.scala:56) at org.apache.spark.scheduler.LiveListenerBus$$anon$1$$anonfun$run$1.apply(LiveListenerBus.scala:47) at org.apache.spark.scheduler.LiveListenerBus$$anon$1$$anonfun$run$1.apply(LiveListenerBus.scala:47) On Wed, Jan 14, 2015 at 4:44 PM, Sean Owen <so...@cloudera.com> wrote: > That's not quite what that error means. Spark is not out of memory. It > means that Spark is using more memory than it asked YARN for. That in > turn is because the default amount of cushion established between the > YARN allowed container size and the JVM heap size is too small. See > spark.yarn.executor.memoryOverhead in > http://spark.apache.org/docs/latest/running-on-yarn.html > > On Wed, Jan 14, 2015 at 9:18 PM, nitinkak001 <nitinkak...@gmail.com> > wrote: > > I am trying to run connected components algorithm in Spark. The graph has > > roughly 28M edges and 3.2M vertices. Here is the code I am using > > > > /val inputFile = > > "/user/hive/warehouse/spark_poc.db/window_compare_output_text/000000_0" > > val conf = new SparkConf().setAppName("ConnectedComponentsTest") > > val sc = new SparkContext(conf) > > val graph = GraphLoader.edgeListFile(sc, inputFile, true, 7, > > StorageLevel.MEMORY_AND_DISK, StorageLevel.MEMORY_AND_DISK); > > graph.cache(); > > val cc = graph.connectedComponents(); > > graph.edges.saveAsTextFile("/user/kakn/output");/ > > > > and here is the command: > > > > /spark-submit --class ConnectedComponentsTest --master yarn-cluster > > --num-executors 7 --driver-memory 6g --executor-memory 8g > --executor-cores 1 > > target/scala-2.10/connectedcomponentstest_2.10-1.0.jar/ > > > > It runs for about an hour and then fails with below error. *Isnt Spark > > supposed to spill on disk if the RDDs dont fit into the memory?* > > > > Application application_1418082773407_8587 failed 2 times due to AM > > Container for appattempt_1418082773407_8587_000002 exited with exitCode: > > -104 due to: Container > > [pid=19790,containerID=container_1418082773407_8587_02_000001] is running > > beyond physical memory limits. Current usage: 6.5 GB of 6.5 GB physical > > memory used; 8.9 GB of 13.6 GB virtual memory used. Killing container. > > Dump of the process-tree for container_1418082773407_8587_02_000001 : > > |- PID PPID PGRPID SESSID CMD_NAME USER_MODE_TIME(MILLIS) > > SYSTEM_TIME(MILLIS) VMEM_USAGE(BYTES) RSSMEM_USAGE(PAGES) FULL_CMD_LINE > > |- 19790 19788 19790 19790 (bash) 0 0 110809088 336 /bin/bash -c > > /usr/java/jdk1.7.0_67-cloudera/bin/java -server -Xmx6144m > > > -Djava.io.tmpdir=/mnt/DATA1/yarn/nm/usercache/kakn/appcache/application_1418082773407_8587/container_1418082773407_8587_02_000001/tmp > > '-Dspark.executor.memory=8g' '-Dspark.eventLog.enabled=true' > > '-Dspark.yarn.secondary.jars=' '-Dspark.app.name > =ConnectedComponentsTest' > > > '-Dspark.eventLog.dir=hdfs://<server-name-replaced>:8020/user/spark/applicationHistory' > > '-Dspark.master=yarn-cluster' > org.apache.spark.deploy.yarn.ApplicationMaster > > --class 'ConnectedComponentsTest' --jar > > > 'file:/home/kakn01/Spark/SparkSource/target/scala-2.10/connectedcomponentstest_2.10-1.0.jar' > > --executor-memory 8192 --executor-cores 1 --num-executors 7 1> > > > /var/log/hadoop-yarn/container/application_1418082773407_8587/container_1418082773407_8587_02_000001/stdout > > 2> > > > /var/log/hadoop-yarn/container/application_1418082773407_8587/container_1418082773407_8587_02_000001/stderr > > |- 19794 19790 19790 19790 (java) 205066 9152 9477726208 1707599 > > /usr/java/jdk1.7.0_67-cloudera/bin/java -server -Xmx6144m > > > -Djava.io.tmpdir=/mnt/DATA1/yarn/nm/usercache/kakn/appcache/application_1418082773407_8587/container_1418082773407_8587_02_000001/tmp > > -Dspark.executor.memory=8g -Dspark.eventLog.enabled=true > > -Dspark.yarn.secondary.jars= -Dspark.app.name=ConnectedComponentsTest > > > -Dspark.eventLog.dir=hdfs://<server-name-replaced>:8020/user/spark/applicationHistory > > -Dspark.master=yarn-cluster > org.apache.spark.deploy.yarn.ApplicationMaster > > --class ConnectedComponentsTest --jar > > > file:/home/kakn01/Spark/SparkSource/target/scala-2.10/connectedcomponentstest_2.10-1.0.jar > > --executor-memory 8192 --executor-cores 1 --num-executors 7 > > Container killed on request. Exit code is 143 > > Container exited with a non-zero exit code 143 > > .Failing this attempt.. Failing the application. > > > > > > > > -- > > View this message in context: > http://apache-spark-user-list.1001560.n3.nabble.com/Running-beyond-memory-limits-in-ConnectedComponents-tp21139.html > > Sent from the Apache Spark User List mailing list archive at Nabble.com. > > > > --------------------------------------------------------------------- > > To unsubscribe, e-mail: user-unsubscr...@spark.apache.org > > For additional commands, e-mail: user-h...@spark.apache.org > > >