Thanks Sean.

I guess Cloudera Manager has parameters executor_total_max_heapsize
and worker_max_heapsize
which point to the parameters you mentioned above.

How much should that cushon between the jvm heap size and yarn memory limit
be?

I tried setting jvm memory to 20g and yarn to 24g, but it gave the same
error as above.

Then, I removed the "--executor-memory" clause

*spark-submit --class ConnectedComponentsTest --master yarn-cluster
 --num-executors 7 --executor-cores 1
target/scala-2.10/connectedcomponentstest_2.10-1.0.jar*

That is not giving GC, Out of memory exception

15/01/14 21:20:33 WARN channel.DefaultChannelPipeline: An exception
was thrown by a user handler while handling an exception event ([id:
0x362d65d4, /10.1.1.33:35463 => /10.1.1.73:43389] EXCEPTION:
java.lang.OutOfMemoryError: GC overhead limit exceeded)
java.lang.OutOfMemoryError: GC overhead limit exceeded
        at java.lang.Object.clone(Native Method)
        at akka.util.CompactByteString$.apply(ByteString.scala:410)
        at akka.util.ByteString$.apply(ByteString.scala:22)
        at 
akka.remote.transport.netty.TcpHandlers$class.onMessage(TcpSupport.scala:45)
        at 
akka.remote.transport.netty.TcpServerHandler.onMessage(TcpSupport.scala:57)
        at 
akka.remote.transport.netty.NettyServerHelpers$class.messageReceived(NettyHelpers.scala:43)
        at 
akka.remote.transport.netty.ServerHandler.messageReceived(NettyTransport.scala:179)
        at 
org.jboss.netty.channel.Channels.fireMessageReceived(Channels.java:296)
        at 
org.jboss.netty.handler.codec.frame.FrameDecoder.unfoldAndFireMessageReceived(FrameDecoder.java:462)
        at 
org.jboss.netty.handler.codec.frame.FrameDecoder.callDecode(FrameDecoder.java:443)
        at 
org.jboss.netty.handler.codec.frame.FrameDecoder.messageReceived(FrameDecoder.java:303)
        at 
org.jboss.netty.channel.Channels.fireMessageReceived(Channels.java:268)
        at 
org.jboss.netty.channel.Channels.fireMessageReceived(Channels.java:255)
        at org.jboss.netty.channel.socket.nio.NioWorker.read(NioWorker.java:88)
        at 
org.jboss.netty.channel.socket.nio.AbstractNioWorker.process(AbstractNioWorker.java:109)
        at 
org.jboss.netty.channel.socket.nio.AbstractNioSelector.run(AbstractNioSelector.java:312)
        at 
org.jboss.netty.channel.socket.nio.AbstractNioWorker.run(AbstractNioWorker.java:90)
        at org.jboss.netty.channel.socket.nio.NioWorker.run(NioWorker.java:178)
        at 
java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
        at 
java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
        at java.lang.Thread.run(Thread.java:745)
15/01/14 21:20:33 ERROR util.Utils: Uncaught exception in thread
SparkListenerBus
java.lang.OutOfMemoryError: GC overhead limit exceeded
        at scala.collection.mutable.ListBuffer.$plus$eq(ListBuffer.scala:168)
        at scala.collection.mutable.ListBuffer.$plus$eq(ListBuffer.scala:45)
        at 
scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
        at 
scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
        at scala.collection.immutable.List.foreach(List.scala:318)
        at scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
        at scala.collection.AbstractTraversable.map(Traversable.scala:105)
        at org.json4s.JsonDSL$class.seq2jvalue(JsonDSL.scala:68)
        at org.json4s.JsonDSL$.seq2jvalue(JsonDSL.scala:61)
        at 
org.apache.spark.util.JsonProtocol$$anonfun$jobStartToJson$3.apply(JsonProtocol.scala:127)
        at 
org.apache.spark.util.JsonProtocol$$anonfun$jobStartToJson$3.apply(JsonProtocol.scala:127)
        at org.json4s.JsonDSL$class.pair2jvalue(JsonDSL.scala:79)
        at org.json4s.JsonDSL$.pair2jvalue(JsonDSL.scala:61)
        at 
org.apache.spark.util.JsonProtocol$.jobStartToJson(JsonProtocol.scala:127)
        at 
org.apache.spark.util.JsonProtocol$.sparkEventToJson(JsonProtocol.scala:59)
        at 
org.apache.spark.scheduler.EventLoggingListener.logEvent(EventLoggingListener.scala:92)
        at 
org.apache.spark.scheduler.EventLoggingListener.onJobStart(EventLoggingListener.scala:118)
        at 
org.apache.spark.scheduler.SparkListenerBus$$anonfun$postToAll$3.apply(SparkListenerBus.scala:50)
        at 
org.apache.spark.scheduler.SparkListenerBus$$anonfun$postToAll$3.apply(SparkListenerBus.scala:50)
        at 
org.apache.spark.scheduler.SparkListenerBus$$anonfun$foreachListener$1.apply(SparkListenerBus.scala:83)
        at 
org.apache.spark.scheduler.SparkListenerBus$$anonfun$foreachListener$1.apply(SparkListenerBus.scala:81)
        at 
scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
        at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
        at 
org.apache.spark.scheduler.SparkListenerBus$class.foreachListener(SparkListenerBus.scala:81)
        at 
org.apache.spark.scheduler.SparkListenerBus$class.postToAll(SparkListenerBus.scala:50)
        at 
org.apache.spark.scheduler.LiveListenerBus.postToAll(LiveListenerBus.scala:32)
        at 
org.apache.spark.scheduler.LiveListenerBus$$anon$1$$anonfun$run$1$$anonfun$apply$mcV$sp$1.apply(LiveListenerBus.scala:56)
        at 
org.apache.spark.scheduler.LiveListenerBus$$anon$1$$anonfun$run$1$$anonfun$apply$mcV$sp$1.apply(LiveListenerBus.scala:56)
        at scala.Option.foreach(Option.scala:236)
        at 
org.apache.spark.scheduler.LiveListenerBus$$anon$1$$anonfun$run$1.apply$mcV$sp(LiveListenerBus.scala:56)
        at 
org.apache.spark.scheduler.LiveListenerBus$$anon$1$$anonfun$run$1.apply(LiveListenerBus.scala:47)
        at 
org.apache.spark.scheduler.LiveListenerBus$$anon$1$$anonfun$run$1.apply(LiveListenerBus.scala:47)
Exception in thread "SparkListenerBus" java.lang.OutOfMemoryError: GC
overhead limit exceeded
        at scala.collection.mutable.ListBuffer.$plus$eq(ListBuffer.scala:168)
        at scala.collection.mutable.ListBuffer.$plus$eq(ListBuffer.scala:45)
        at 
scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
        at 
scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
        at scala.collection.immutable.List.foreach(List.scala:318)
        at scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
        at scala.collection.AbstractTraversable.map(Traversable.scala:105)
        at org.json4s.JsonDSL$class.seq2jvalue(JsonDSL.scala:68)
        at org.json4s.JsonDSL$.seq2jvalue(JsonDSL.scala:61)
        at 
org.apache.spark.util.JsonProtocol$$anonfun$jobStartToJson$3.apply(JsonProtocol.scala:127)
        at 
org.apache.spark.util.JsonProtocol$$anonfun$jobStartToJson$3.apply(JsonProtocol.scala:127)
        at org.json4s.JsonDSL$class.pair2jvalue(JsonDSL.scala:79)
        at org.json4s.JsonDSL$.pair2jvalue(JsonDSL.scala:61)
        at 
org.apache.spark.util.JsonProtocol$.jobStartToJson(JsonProtocol.scala:127)
        at 
org.apache.spark.util.JsonProtocol$.sparkEventToJson(JsonProtocol.scala:59)
        at 
org.apache.spark.scheduler.EventLoggingListener.logEvent(EventLoggingListener.scala:92)
        at 
org.apache.spark.scheduler.EventLoggingListener.onJobStart(EventLoggingListener.scala:118)
        at 
org.apache.spark.scheduler.SparkListenerBus$$anonfun$postToAll$3.apply(SparkListenerBus.scala:50)
        at 
org.apache.spark.scheduler.SparkListenerBus$$anonfun$postToAll$3.apply(SparkListenerBus.scala:50)
        at 
org.apache.spark.scheduler.SparkListenerBus$$anonfun$foreachListener$1.apply(SparkListenerBus.scala:83)
        at 
org.apache.spark.scheduler.SparkListenerBus$$anonfun$foreachListener$1.apply(SparkListenerBus.scala:81)
        at 
scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
        at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
        at 
org.apache.spark.scheduler.SparkListenerBus$class.foreachListener(SparkListenerBus.scala:81)
        at 
org.apache.spark.scheduler.SparkListenerBus$class.postToAll(SparkListenerBus.scala:50)
        at 
org.apache.spark.scheduler.LiveListenerBus.postToAll(LiveListenerBus.scala:32)
        at 
org.apache.spark.scheduler.LiveListenerBus$$anon$1$$anonfun$run$1$$anonfun$apply$mcV$sp$1.apply(LiveListenerBus.scala:56)
        at 
org.apache.spark.scheduler.LiveListenerBus$$anon$1$$anonfun$run$1$$anonfun$apply$mcV$sp$1.apply(LiveListenerBus.scala:56)
        at scala.Option.foreach(Option.scala:236)
        at 
org.apache.spark.scheduler.LiveListenerBus$$anon$1$$anonfun$run$1.apply$mcV$sp(LiveListenerBus.scala:56)
        at 
org.apache.spark.scheduler.LiveListenerBus$$anon$1$$anonfun$run$1.apply(LiveListenerBus.scala:47)
        at 
org.apache.spark.scheduler.LiveListenerBus$$anon$1$$anonfun$run$1.apply(LiveListenerBus.scala:47)


On Wed, Jan 14, 2015 at 4:44 PM, Sean Owen <so...@cloudera.com> wrote:

> That's not quite what that error means. Spark is not out of memory. It
> means that Spark is using more memory than it asked YARN for. That in
> turn is because the default amount of cushion established between the
> YARN allowed container size and the JVM heap size is too small. See
> spark.yarn.executor.memoryOverhead in
> http://spark.apache.org/docs/latest/running-on-yarn.html
>
> On Wed, Jan 14, 2015 at 9:18 PM, nitinkak001 <nitinkak...@gmail.com>
> wrote:
> > I am trying to run connected components algorithm in Spark. The graph has
> > roughly 28M edges and 3.2M vertices. Here is the code I am using
> >
> >  /val inputFile =
> > "/user/hive/warehouse/spark_poc.db/window_compare_output_text/000000_0"
> >     val conf = new SparkConf().setAppName("ConnectedComponentsTest")
> >     val sc = new SparkContext(conf)
> >     val graph = GraphLoader.edgeListFile(sc, inputFile, true, 7,
> > StorageLevel.MEMORY_AND_DISK, StorageLevel.MEMORY_AND_DISK);
> >     graph.cache();
> >     val cc = graph.connectedComponents();
> >     graph.edges.saveAsTextFile("/user/kakn/output");/
> >
> > and here is the command:
> >
> > /spark-submit --class ConnectedComponentsTest --master yarn-cluster
> > --num-executors 7 --driver-memory 6g --executor-memory 8g
> --executor-cores 1
> > target/scala-2.10/connectedcomponentstest_2.10-1.0.jar/
> >
> > It runs for about an hour and then fails with below error. *Isnt Spark
> > supposed to spill on disk if the RDDs dont fit into the memory?*
> >
> > Application application_1418082773407_8587 failed 2 times due to AM
> > Container for appattempt_1418082773407_8587_000002 exited with exitCode:
> > -104 due to: Container
> > [pid=19790,containerID=container_1418082773407_8587_02_000001] is running
> > beyond physical memory limits. Current usage: 6.5 GB of 6.5 GB physical
> > memory used; 8.9 GB of 13.6 GB virtual memory used. Killing container.
> > Dump of the process-tree for container_1418082773407_8587_02_000001 :
> > |- PID PPID PGRPID SESSID CMD_NAME USER_MODE_TIME(MILLIS)
> > SYSTEM_TIME(MILLIS) VMEM_USAGE(BYTES) RSSMEM_USAGE(PAGES) FULL_CMD_LINE
> > |- 19790 19788 19790 19790 (bash) 0 0 110809088 336 /bin/bash -c
> > /usr/java/jdk1.7.0_67-cloudera/bin/java -server -Xmx6144m
> >
> -Djava.io.tmpdir=/mnt/DATA1/yarn/nm/usercache/kakn/appcache/application_1418082773407_8587/container_1418082773407_8587_02_000001/tmp
> > '-Dspark.executor.memory=8g' '-Dspark.eventLog.enabled=true'
> > '-Dspark.yarn.secondary.jars=' '-Dspark.app.name
> =ConnectedComponentsTest'
> >
> '-Dspark.eventLog.dir=hdfs://<server-name-replaced>:8020/user/spark/applicationHistory'
> > '-Dspark.master=yarn-cluster'
> org.apache.spark.deploy.yarn.ApplicationMaster
> > --class 'ConnectedComponentsTest' --jar
> >
> 'file:/home/kakn01/Spark/SparkSource/target/scala-2.10/connectedcomponentstest_2.10-1.0.jar'
> > --executor-memory 8192 --executor-cores 1 --num-executors 7 1>
> >
> /var/log/hadoop-yarn/container/application_1418082773407_8587/container_1418082773407_8587_02_000001/stdout
> > 2>
> >
> /var/log/hadoop-yarn/container/application_1418082773407_8587/container_1418082773407_8587_02_000001/stderr
> > |- 19794 19790 19790 19790 (java) 205066 9152 9477726208 1707599
> > /usr/java/jdk1.7.0_67-cloudera/bin/java -server -Xmx6144m
> >
> -Djava.io.tmpdir=/mnt/DATA1/yarn/nm/usercache/kakn/appcache/application_1418082773407_8587/container_1418082773407_8587_02_000001/tmp
> > -Dspark.executor.memory=8g -Dspark.eventLog.enabled=true
> > -Dspark.yarn.secondary.jars= -Dspark.app.name=ConnectedComponentsTest
> >
> -Dspark.eventLog.dir=hdfs://<server-name-replaced>:8020/user/spark/applicationHistory
> > -Dspark.master=yarn-cluster
> org.apache.spark.deploy.yarn.ApplicationMaster
> > --class ConnectedComponentsTest --jar
> >
> file:/home/kakn01/Spark/SparkSource/target/scala-2.10/connectedcomponentstest_2.10-1.0.jar
> > --executor-memory 8192 --executor-cores 1 --num-executors 7
> > Container killed on request. Exit code is 143
> > Container exited with a non-zero exit code 143
> > .Failing this attempt.. Failing the application.
> >
> >
> >
> > --
> > View this message in context:
> http://apache-spark-user-list.1001560.n3.nabble.com/Running-beyond-memory-limits-in-ConnectedComponents-tp21139.html
> > Sent from the Apache Spark User List mailing list archive at Nabble.com.
> >
> > ---------------------------------------------------------------------
> > To unsubscribe, e-mail: user-unsubscr...@spark.apache.org
> > For additional commands, e-mail: user-h...@spark.apache.org
> >
>

Reply via email to