Thanks for sticking to this thread.

I am guessing what memory my app requests and what Yarn requests on my part
should be same and is determined by the value of *--executor-memory* which
I had set to *20G*. Or can the two values be different?

I checked in Yarn configurations(below), so I think that fits well into the
memory overhead limits.


Container Memory Maximum
yarn.scheduler.maximum-allocation-mb
 MiBGiB
Reset to the default value: 64 GiB
<http://10.1.1.49:7180/cmf/services/108/config#>
Override Instances
<http://10.1.1.49:7180/cmf/service/108/roleType/RESOURCEMANAGER/group/yarn-RESOURCEMANAGER-BASE/config/yarn_scheduler_maximum_allocation_mb?wizardMode=false&returnUrl=%2Fcmf%2Fservices%2F108%2Fconfig&filterValue=>

The largest amount of physical memory, in MiB, that can be requested for a
container.





On Thu, Jan 15, 2015 at 10:28 AM, Sean Owen <so...@cloudera.com> wrote:

> Those settings aren't relevant, I think. You're concerned with what
> your app requests, and what Spark requests of YARN on your behalf. (Of
> course, you can't request more than what your cluster allows for a
> YARN container for example, but that doesn't seem to be what is
> happening here.)
>
> You do not want to omit --executor-memory if you need large executor
> memory heaps, since then you just request the default and that is
> evidently not enough memory for your app.
>
> Look at http://spark.apache.org/docs/latest/running-on-yarn.html and
> spark.yarn.executor.memoryOverhead  By default it's 7% of your 20G or
> about 1.4G. You might set this higher to 2G to give more overhead.
>
> See the --config property=value syntax documented in
> http://spark.apache.org/docs/latest/submitting-applications.html
>
> On Thu, Jan 15, 2015 at 3:47 AM, Nitin kak <nitinkak...@gmail.com> wrote:
> > Thanks Sean.
> >
> > I guess Cloudera Manager has parameters executor_total_max_heapsize and
> > worker_max_heapsize which point to the parameters you mentioned above.
> >
> > How much should that cushon between the jvm heap size and yarn memory
> limit
> > be?
> >
> > I tried setting jvm memory to 20g and yarn to 24g, but it gave the same
> > error as above.
> >
> > Then, I removed the "--executor-memory" clause
> >
> > spark-submit --class ConnectedComponentsTest --master yarn-cluster
> > --num-executors 7 --executor-cores 1
> > target/scala-2.10/connectedcomponentstest_2.10-1.0.jar
> >
> > That is not giving GC, Out of memory exception
> >
> > 15/01/14 21:20:33 WARN channel.DefaultChannelPipeline: An exception was
> > thrown by a user handler while handling an exception event ([id:
> 0x362d65d4,
> > /10.1.1.33:35463 => /10.1.1.73:43389] EXCEPTION:
> java.lang.OutOfMemoryError:
> > GC overhead limit exceeded)
> > java.lang.OutOfMemoryError: GC overhead limit exceeded
> >       at java.lang.Object.clone(Native Method)
> >       at akka.util.CompactByteString$.apply(ByteString.scala:410)
> >       at akka.util.ByteString$.apply(ByteString.scala:22)
> >       at
> >
> akka.remote.transport.netty.TcpHandlers$class.onMessage(TcpSupport.scala:45)
> >       at
> >
> akka.remote.transport.netty.TcpServerHandler.onMessage(TcpSupport.scala:57)
> >       at
> >
> akka.remote.transport.netty.NettyServerHelpers$class.messageReceived(NettyHelpers.scala:43)
> >       at
> >
> akka.remote.transport.netty.ServerHandler.messageReceived(NettyTransport.scala:179)
> >       at
> org.jboss.netty.channel.Channels.fireMessageReceived(Channels.java:296)
> >       at
> >
> org.jboss.netty.handler.codec.frame.FrameDecoder.unfoldAndFireMessageReceived(FrameDecoder.java:462)
> >       at
> >
> org.jboss.netty.handler.codec.frame.FrameDecoder.callDecode(FrameDecoder.java:443)
> >       at
> >
> org.jboss.netty.handler.codec.frame.FrameDecoder.messageReceived(FrameDecoder.java:303)
> >       at
> org.jboss.netty.channel.Channels.fireMessageReceived(Channels.java:268)
> >       at
> org.jboss.netty.channel.Channels.fireMessageReceived(Channels.java:255)
> >       at
> org.jboss.netty.channel.socket.nio.NioWorker.read(NioWorker.java:88)
> >       at
> >
> org.jboss.netty.channel.socket.nio.AbstractNioWorker.process(AbstractNioWorker.java:109)
> >       at
> >
> org.jboss.netty.channel.socket.nio.AbstractNioSelector.run(AbstractNioSelector.java:312)
> >       at
> >
> org.jboss.netty.channel.socket.nio.AbstractNioWorker.run(AbstractNioWorker.java:90)
> >       at
> org.jboss.netty.channel.socket.nio.NioWorker.run(NioWorker.java:178)
> >       at
> >
> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
> >       at
> >
> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
> >       at java.lang.Thread.run(Thread.java:745)
> > 15/01/14 21:20:33 ERROR util.Utils: Uncaught exception in thread
> > SparkListenerBus
> > java.lang.OutOfMemoryError: GC overhead limit exceeded
> >       at
> scala.collection.mutable.ListBuffer.$plus$eq(ListBuffer.scala:168)
> >       at
> scala.collection.mutable.ListBuffer.$plus$eq(ListBuffer.scala:45)
> >       at
> >
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
> >       at
> >
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
> >       at scala.collection.immutable.List.foreach(List.scala:318)
> >       at
> scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
> >       at scala.collection.AbstractTraversable.map(Traversable.scala:105)
> >       at org.json4s.JsonDSL$class.seq2jvalue(JsonDSL.scala:68)
> >       at org.json4s.JsonDSL$.seq2jvalue(JsonDSL.scala:61)
> >       at
> >
> org.apache.spark.util.JsonProtocol$$anonfun$jobStartToJson$3.apply(JsonProtocol.scala:127)
> >       at
> >
> org.apache.spark.util.JsonProtocol$$anonfun$jobStartToJson$3.apply(JsonProtocol.scala:127)
> >       at org.json4s.JsonDSL$class.pair2jvalue(JsonDSL.scala:79)
> >       at org.json4s.JsonDSL$.pair2jvalue(JsonDSL.scala:61)
> >       at
> >
> org.apache.spark.util.JsonProtocol$.jobStartToJson(JsonProtocol.scala:127)
> >       at
> >
> org.apache.spark.util.JsonProtocol$.sparkEventToJson(JsonProtocol.scala:59)
> >       at
> >
> org.apache.spark.scheduler.EventLoggingListener.logEvent(EventLoggingListener.scala:92)
> >       at
> >
> org.apache.spark.scheduler.EventLoggingListener.onJobStart(EventLoggingListener.scala:118)
> >       at
> >
> org.apache.spark.scheduler.SparkListenerBus$$anonfun$postToAll$3.apply(SparkListenerBus.scala:50)
> >       at
> >
> org.apache.spark.scheduler.SparkListenerBus$$anonfun$postToAll$3.apply(SparkListenerBus.scala:50)
> >       at
> >
> org.apache.spark.scheduler.SparkListenerBus$$anonfun$foreachListener$1.apply(SparkListenerBus.scala:83)
> >       at
> >
> org.apache.spark.scheduler.SparkListenerBus$$anonfun$foreachListener$1.apply(SparkListenerBus.scala:81)
> >       at
> >
> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
> >       at
> scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
> >       at
> >
> org.apache.spark.scheduler.SparkListenerBus$class.foreachListener(SparkListenerBus.scala:81)
> >       at
> >
> org.apache.spark.scheduler.SparkListenerBus$class.postToAll(SparkListenerBus.scala:50)
> >       at
> >
> org.apache.spark.scheduler.LiveListenerBus.postToAll(LiveListenerBus.scala:32)
> >       at
> >
> org.apache.spark.scheduler.LiveListenerBus$$anon$1$$anonfun$run$1$$anonfun$apply$mcV$sp$1.apply(LiveListenerBus.scala:56)
> >       at
> >
> org.apache.spark.scheduler.LiveListenerBus$$anon$1$$anonfun$run$1$$anonfun$apply$mcV$sp$1.apply(LiveListenerBus.scala:56)
> >       at scala.Option.foreach(Option.scala:236)
> >       at
> >
> org.apache.spark.scheduler.LiveListenerBus$$anon$1$$anonfun$run$1.apply$mcV$sp(LiveListenerBus.scala:56)
> >       at
> >
> org.apache.spark.scheduler.LiveListenerBus$$anon$1$$anonfun$run$1.apply(LiveListenerBus.scala:47)
> >       at
> >
> org.apache.spark.scheduler.LiveListenerBus$$anon$1$$anonfun$run$1.apply(LiveListenerBus.scala:47)
> > Exception in thread "SparkListenerBus" java.lang.OutOfMemoryError: GC
> > overhead limit exceeded
> >       at
> scala.collection.mutable.ListBuffer.$plus$eq(ListBuffer.scala:168)
> >       at
> scala.collection.mutable.ListBuffer.$plus$eq(ListBuffer.scala:45)
> >       at
> >
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
> >       at
> >
> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244)
> >       at scala.collection.immutable.List.foreach(List.scala:318)
> >       at
> scala.collection.TraversableLike$class.map(TraversableLike.scala:244)
> >       at scala.collection.AbstractTraversable.map(Traversable.scala:105)
> >       at org.json4s.JsonDSL$class.seq2jvalue(JsonDSL.scala:68)
> >       at org.json4s.JsonDSL$.seq2jvalue(JsonDSL.scala:61)
> >       at
> >
> org.apache.spark.util.JsonProtocol$$anonfun$jobStartToJson$3.apply(JsonProtocol.scala:127)
> >       at
> >
> org.apache.spark.util.JsonProtocol$$anonfun$jobStartToJson$3.apply(JsonProtocol.scala:127)
> >       at org.json4s.JsonDSL$class.pair2jvalue(JsonDSL.scala:79)
> >       at org.json4s.JsonDSL$.pair2jvalue(JsonDSL.scala:61)
> >       at
> >
> org.apache.spark.util.JsonProtocol$.jobStartToJson(JsonProtocol.scala:127)
> >       at
> >
> org.apache.spark.util.JsonProtocol$.sparkEventToJson(JsonProtocol.scala:59)
> >       at
> >
> org.apache.spark.scheduler.EventLoggingListener.logEvent(EventLoggingListener.scala:92)
> >       at
> >
> org.apache.spark.scheduler.EventLoggingListener.onJobStart(EventLoggingListener.scala:118)
> >       at
> >
> org.apache.spark.scheduler.SparkListenerBus$$anonfun$postToAll$3.apply(SparkListenerBus.scala:50)
> >       at
> >
> org.apache.spark.scheduler.SparkListenerBus$$anonfun$postToAll$3.apply(SparkListenerBus.scala:50)
> >       at
> >
> org.apache.spark.scheduler.SparkListenerBus$$anonfun$foreachListener$1.apply(SparkListenerBus.scala:83)
> >       at
> >
> org.apache.spark.scheduler.SparkListenerBus$$anonfun$foreachListener$1.apply(SparkListenerBus.scala:81)
> >       at
> >
> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
> >       at
> scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
> >       at
> >
> org.apache.spark.scheduler.SparkListenerBus$class.foreachListener(SparkListenerBus.scala:81)
> >       at
> >
> org.apache.spark.scheduler.SparkListenerBus$class.postToAll(SparkListenerBus.scala:50)
> >       at
> >
> org.apache.spark.scheduler.LiveListenerBus.postToAll(LiveListenerBus.scala:32)
> >       at
> >
> org.apache.spark.scheduler.LiveListenerBus$$anon$1$$anonfun$run$1$$anonfun$apply$mcV$sp$1.apply(LiveListenerBus.scala:56)
> >       at
> >
> org.apache.spark.scheduler.LiveListenerBus$$anon$1$$anonfun$run$1$$anonfun$apply$mcV$sp$1.apply(LiveListenerBus.scala:56)
> >       at scala.Option.foreach(Option.scala:236)
> >       at
> >
> org.apache.spark.scheduler.LiveListenerBus$$anon$1$$anonfun$run$1.apply$mcV$sp(LiveListenerBus.scala:56)
> >       at
> >
> org.apache.spark.scheduler.LiveListenerBus$$anon$1$$anonfun$run$1.apply(LiveListenerBus.scala:47)
> >       at
> >
> org.apache.spark.scheduler.LiveListenerBus$$anon$1$$anonfun$run$1.apply(LiveListenerBus.scala:47)
> >
> >
> > On Wed, Jan 14, 2015 at 4:44 PM, Sean Owen <so...@cloudera.com> wrote:
> >>
> >> That's not quite what that error means. Spark is not out of memory. It
> >> means that Spark is using more memory than it asked YARN for. That in
> >> turn is because the default amount of cushion established between the
> >> YARN allowed container size and the JVM heap size is too small. See
> >> spark.yarn.executor.memoryOverhead in
> >> http://spark.apache.org/docs/latest/running-on-yarn.html
> >>
> >> On Wed, Jan 14, 2015 at 9:18 PM, nitinkak001 <nitinkak...@gmail.com>
> >> wrote:
> >> > I am trying to run connected components algorithm in Spark. The graph
> >> > has
> >> > roughly 28M edges and 3.2M vertices. Here is the code I am using
> >> >
> >> >  /val inputFile =
> >> >
> "/user/hive/warehouse/spark_poc.db/window_compare_output_text/000000_0"
> >> >     val conf = new SparkConf().setAppName("ConnectedComponentsTest")
> >> >     val sc = new SparkContext(conf)
> >> >     val graph = GraphLoader.edgeListFile(sc, inputFile, true, 7,
> >> > StorageLevel.MEMORY_AND_DISK, StorageLevel.MEMORY_AND_DISK);
> >> >     graph.cache();
> >> >     val cc = graph.connectedComponents();
> >> >     graph.edges.saveAsTextFile("/user/kakn/output");/
> >> >
> >> > and here is the command:
> >> >
> >> > /spark-submit --class ConnectedComponentsTest --master yarn-cluster
> >> > --num-executors 7 --driver-memory 6g --executor-memory 8g
> >> > --executor-cores 1
> >> > target/scala-2.10/connectedcomponentstest_2.10-1.0.jar/
> >> >
> >> > It runs for about an hour and then fails with below error. *Isnt Spark
> >> > supposed to spill on disk if the RDDs dont fit into the memory?*
> >> >
> >> > Application application_1418082773407_8587 failed 2 times due to AM
> >> > Container for appattempt_1418082773407_8587_000002 exited with
> exitCode:
> >> > -104 due to: Container
> >> > [pid=19790,containerID=container_1418082773407_8587_02_000001] is
> >> > running
> >> > beyond physical memory limits. Current usage: 6.5 GB of 6.5 GB
> physical
> >> > memory used; 8.9 GB of 13.6 GB virtual memory used. Killing container.
> >> > Dump of the process-tree for container_1418082773407_8587_02_000001 :
> >> > |- PID PPID PGRPID SESSID CMD_NAME USER_MODE_TIME(MILLIS)
> >> > SYSTEM_TIME(MILLIS) VMEM_USAGE(BYTES) RSSMEM_USAGE(PAGES)
> FULL_CMD_LINE
> >> > |- 19790 19788 19790 19790 (bash) 0 0 110809088 336 /bin/bash -c
> >> > /usr/java/jdk1.7.0_67-cloudera/bin/java -server -Xmx6144m
> >> >
> >> >
> -Djava.io.tmpdir=/mnt/DATA1/yarn/nm/usercache/kakn/appcache/application_1418082773407_8587/container_1418082773407_8587_02_000001/tmp
> >> > '-Dspark.executor.memory=8g' '-Dspark.eventLog.enabled=true'
> >> > '-Dspark.yarn.secondary.jars='
> >> > '-Dspark.app.name=ConnectedComponentsTest'
> >> >
> >> >
> '-Dspark.eventLog.dir=hdfs://<server-name-replaced>:8020/user/spark/applicationHistory'
> >> > '-Dspark.master=yarn-cluster'
> >> > org.apache.spark.deploy.yarn.ApplicationMaster
> >> > --class 'ConnectedComponentsTest' --jar
> >> >
> >> >
> 'file:/home/kakn01/Spark/SparkSource/target/scala-2.10/connectedcomponentstest_2.10-1.0.jar'
> >> > --executor-memory 8192 --executor-cores 1 --num-executors 7 1>
> >> >
> >> >
> /var/log/hadoop-yarn/container/application_1418082773407_8587/container_1418082773407_8587_02_000001/stdout
> >> > 2>
> >> >
> >> >
> /var/log/hadoop-yarn/container/application_1418082773407_8587/container_1418082773407_8587_02_000001/stderr
> >> > |- 19794 19790 19790 19790 (java) 205066 9152 9477726208 1707599
> >> > /usr/java/jdk1.7.0_67-cloudera/bin/java -server -Xmx6144m
> >> >
> >> >
> -Djava.io.tmpdir=/mnt/DATA1/yarn/nm/usercache/kakn/appcache/application_1418082773407_8587/container_1418082773407_8587_02_000001/tmp
> >> > -Dspark.executor.memory=8g -Dspark.eventLog.enabled=true
> >> > -Dspark.yarn.secondary.jars= -Dspark.app.name=ConnectedComponentsTest
> >> >
> >> >
> -Dspark.eventLog.dir=hdfs://<server-name-replaced>:8020/user/spark/applicationHistory
> >> > -Dspark.master=yarn-cluster
> >> > org.apache.spark.deploy.yarn.ApplicationMaster
> >> > --class ConnectedComponentsTest --jar
> >> >
> >> >
> file:/home/kakn01/Spark/SparkSource/target/scala-2.10/connectedcomponentstest_2.10-1.0.jar
> >> > --executor-memory 8192 --executor-cores 1 --num-executors 7
> >> > Container killed on request. Exit code is 143
> >> > Container exited with a non-zero exit code 143
> >> > .Failing this attempt.. Failing the application.
> >> >
> >> >
> >> >
> >> > --
> >> > View this message in context:
> >> >
> http://apache-spark-user-list.1001560.n3.nabble.com/Running-beyond-memory-limits-in-ConnectedComponents-tp21139.html
> >> > Sent from the Apache Spark User List mailing list archive at
> Nabble.com.
> >> >
> >> > ---------------------------------------------------------------------
> >> > To unsubscribe, e-mail: user-unsubscr...@spark.apache.org
> >> > For additional commands, e-mail: user-h...@spark.apache.org
> >> >
> >
> >
>

Reply via email to