Are you running on top of YARN? Plus pls provide your infrastructure details.
Regards Sab On 28-Jun-2015 8:47 am, "Ayman Farahat" <ayman.fara...@yahoo.com.invalid> wrote: > Hello; > I tried to adjust the number of blocks by repartitioning the input. > Here is How I do it; (I am partitioning by users ) > > tot = newrdd.map(lambda l: > (l[1],Rating(int(l[1]),int(l[2]),l[4]))).partitionBy(50).cache() > ratings = tot.values() > numIterations =8 > rank = 80 > model = ALS.trainImplicit(ratings, rank, numIterations) > > > I have 20 executors > with 5GM memory per executor. > When i use 80 factors I keep getting the following problem : > > Traceback (most recent call last): > File "/homes/afarahat/myspark/mm/df4test.py", line 85, in <module> > model = ALS.trainImplicit(ratings, rank, numIterations) > File > "/homes/afarahat/aofspark/share/spark/python/lib/pyspark.zip/pyspark/mllib/recommendation.py", > line 201, in trainImplicit > File > "/homes/afarahat/aofspark/share/spark/python/lib/pyspark.zip/pyspark/mllib/common.py", > line 128, in callMLlibFunc > File > "/homes/afarahat/aofspark/share/spark/python/lib/pyspark.zip/pyspark/mllib/common.py", > line 121, in callJavaFunc > File > "/homes/afarahat/aofspark/share/spark/python/lib/py4j-0.8.2.1-src.zip/py4j/java_gateway.py", > line 538, in __call__ > File > "/homes/afarahat/aofspark/share/spark/python/lib/py4j-0.8.2.1-src.zip/py4j/protocol.py", > line 300, in get_return_value > py4j.protocol.Py4JJavaError: An error occurred while calling > o113.trainImplicitALSModel. > : org.apache.spark.SparkException: Job aborted due to stage failure: Task > 7 in stage 36.1 failed 4 times, most recent failure: Lost task 7.3 in stage > 36.1 (TID 1841, gsbl52746.blue.ygrid.yahoo.com): > java.io.FileNotFoundException: > /grid/3/tmp/yarn-local/usercache/afarahat/appcache/application_1433921068880_1027774/blockmgr-0e518470-57d8-472f-8fba-3b593e4dda42/27/rdd_56_24 > (No such file or directory) > at java.io.RandomAccessFile.open(Native Method) > at java.io.RandomAccessFile.<init>(RandomAccessFile.java:233) > at org.apache.spark.storage.DiskStore.getBytes(DiskStore.scala:110) > at org.apache.spark.storage.DiskStore.getBytes(DiskStore.scala:134) > at > org.apache.spark.storage.BlockManager.doGetLocal(BlockManager.scala:511) > at > org.apache.spark.storage.BlockManager.getLocal(BlockManager.scala:429) > at > org.apache.spark.storage.BlockManager.get(BlockManager.scala:617) > at > org.apache.spark.CacheManager.getOrCompute(CacheManager.scala:44) > at org.apache.spark.rdd.RDD.iterator(RDD.scala:242) > at > org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:70) > at > org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41) > at org.apache.spark.scheduler.Task.run(Task.scala:70) > at > org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213) > at > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) > at > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) > at java.lang.Thread.run(Thread.java:722) > > Driver stacktrace: > at org.apache.spark.scheduler.DAGScheduler.org > $apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1266) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1257) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1256) > at > scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) > at > scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) > at > org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1256) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:730) > at > org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:730) > at scala.Option.foreach(Option.scala:236) > at > org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:730) > at > org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1450) > at > org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1411) > at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48) > > Jun 28, 2015 2:10:37 AM INFO: parquet.hadoop.ParquetFileReader: Initiating > action with parallelism: 5 > ~ > > On Jun 26, 2015, at 12:33 PM, Xiangrui Meng <men...@gmail.com> wrote: > > So you have 100 partitions (blocks). This might be too many for your > dataset. Try setting a smaller number of blocks, e.g., 32 or 64. When ALS > starts iterations, you can see the shuffle read/write size from the > "stages" tab of Spark WebUI. Vary number of blocks and check the numbers > there. Kyro serializer doesn't help much here. You can try disabling it > (though I don't think it caused the failure). -Xiangrui > > On Fri, Jun 26, 2015 at 11:00 AM, Ayman Farahat <ayman.fara...@yahoo.com> > wrote: > >> Hello ; >> I checked on my partitions/storage and here is what I have >> >> I have 80 executors >> 5 G per executore. >> >> Do i need to set additional params >> say cores >> >> spark.serializer >> org.apache.spark.serializer.KryoSerializer >> # spark.driver.memory 5g >> # spark.executor.extraJavaOptions -XX:+PrintGCDetails -Dkey=value >> -Dnumbers="one two three" >> spark.shuffle.memoryFraction 0.3 >> spark.storage.memoryFraction 0.65 >> >> >> >> RDD NameStorage LevelCached PartitionsFraction CachedSize in MemorySize >> in TachyonSize on Disk ratingBlocks >> <http://mithrilblue-jt1.blue.ygrid.yahoo.com:8088/proxy/application_1433921068880_943447/storage/rdd?id=44> >> Memory >> Deserialized 1x Replicated 257 129% 4.1 GB 0.0 B 0.0 B itemOutBlocks >> <http://mithrilblue-jt1.blue.ygrid.yahoo.com:8088/proxy/application_1433921068880_943447/storage/rdd?id=53> >> Memory >> Deserialized 1x Replicated 100 100% 7.3 MB 0.0 B 0.0 B 38 >> <http://mithrilblue-jt1.blue.ygrid.yahoo.com:8088/proxy/application_1433921068880_943447/storage/rdd?id=38> >> Memory >> Serialized 1x Replicated 193 97% 5.6 GB 0.0 B 0.0 B userInBlocks >> <http://mithrilblue-jt1.blue.ygrid.yahoo.com:8088/proxy/application_1433921068880_943447/storage/rdd?id=47> >> Memory >> Deserialized 1x Replicated 100 100% 2.8 GB 0.0 B 0.0 B itemFactors-1 >> <http://mithrilblue-jt1.blue.ygrid.yahoo.com:8088/proxy/application_1433921068880_943447/storage/rdd?id=65> >> Memory >> Deserialized 1x Replicated 69 69% 8.4 MB 0.0 B 0.0 B itemInBlocks >> <http://mithrilblue-jt1.blue.ygrid.yahoo.com:8088/proxy/application_1433921068880_943447/storage/rdd?id=52> >> Memory >> Deserialized 1x Replicated 69 69% 1455.3 MB 0.0 B 0.0 B userFactors-1 >> <http://mithrilblue-jt1.blue.ygrid.yahoo.com:8088/proxy/application_1433921068880_943447/storage/rdd?id=54> >> Memory >> Deserialized 1x Replicated 100 100% 35.0 GB 0.0 B 0.0 B userOutBlocks >> <http://mithrilblue-jt1.blue.ygrid.yahoo.com:8088/proxy/application_1433921068880_943447/storage/rdd?id=48> >> Memory >> Deserialized 1x Replicated 100 100% 1062.7 MB 0.0 B 0.0 B >> >> On Jun 26, 2015, at 8:26 AM, Xiangrui Meng <men...@gmail.com> wrote: >> >> number of CPU cores or less. >> >> >> > >