That's correct this is Yarn
And spark 1.4
Also using the Anaconda tar for Numpy and other Libs


Sent from my iPhone

> On Jun 27, 2015, at 8:50 PM, Sabarish Sasidharan 
> <sabarish.sasidha...@manthan.com> wrote:
> 
> Are you running on top of YARN? Plus pls provide your infrastructure details.
> 
> Regards
> Sab
> 
>> On 28-Jun-2015 8:47 am, "Ayman Farahat" <ayman.fara...@yahoo.com.invalid> 
>> wrote:
>> Hello; 
>> I tried to adjust the number of blocks by repartitioning the input. 
>> Here is How I do it;  (I am partitioning by users )
>> 
>> tot = newrdd.map(lambda l: 
>> (l[1],Rating(int(l[1]),int(l[2]),l[4]))).partitionBy(50).cache()
>> ratings = tot.values()
>> numIterations =8
>> rank = 80
>> model = ALS.trainImplicit(ratings, rank, numIterations)
>> 
>> 
>> I have 20 executors
>> with 5GM memory per executor. 
>> When i use 80 factors I keep getting the following problem :
>> 
>> Traceback (most recent call last):
>>   File "/homes/afarahat/myspark/mm/df4test.py", line 85, in <module>
>>     model = ALS.trainImplicit(ratings, rank, numIterations)
>>   File 
>> "/homes/afarahat/aofspark/share/spark/python/lib/pyspark.zip/pyspark/mllib/recommendation.py",
>>  line 201, in trainImplicit
>>   File 
>> "/homes/afarahat/aofspark/share/spark/python/lib/pyspark.zip/pyspark/mllib/common.py",
>>  line 128, in callMLlibFunc
>>   File 
>> "/homes/afarahat/aofspark/share/spark/python/lib/pyspark.zip/pyspark/mllib/common.py",
>>  line 121, in callJavaFunc
>>   File 
>> "/homes/afarahat/aofspark/share/spark/python/lib/py4j-0.8.2.1-src.zip/py4j/java_gateway.py",
>>  line 538, in __call__
>>   File 
>> "/homes/afarahat/aofspark/share/spark/python/lib/py4j-0.8.2.1-src.zip/py4j/protocol.py",
>>  line 300, in get_return_value
>> py4j.protocol.Py4JJavaError: An error occurred while calling 
>> o113.trainImplicitALSModel.
>> : org.apache.spark.SparkException: Job aborted due to stage failure: Task 7 
>> in stage 36.1 failed 4 times, most recent failure: Lost task 7.3 in stage 
>> 36.1 (TID 1841, gsbl52746.blue.ygrid.yahoo.com): 
>> java.io.FileNotFoundException: 
>> /grid/3/tmp/yarn-local/usercache/afarahat/appcache/application_1433921068880_1027774/blockmgr-0e518470-57d8-472f-8fba-3b593e4dda42/27/rdd_56_24
>>  (No such file or directory)
>>         at java.io.RandomAccessFile.open(Native Method)
>>         at java.io.RandomAccessFile.<init>(RandomAccessFile.java:233)
>>         at org.apache.spark.storage.DiskStore.getBytes(DiskStore.scala:110)
>>         at org.apache.spark.storage.DiskStore.getBytes(DiskStore.scala:134)
>>         at 
>> org.apache.spark.storage.BlockManager.doGetLocal(BlockManager.scala:511)
>>         at 
>> org.apache.spark.storage.BlockManager.getLocal(BlockManager.scala:429)
>>         at org.apache.spark.storage.BlockManager.get(BlockManager.scala:617)
>>         at org.apache.spark.CacheManager.getOrCompute(CacheManager.scala:44)
>>         at org.apache.spark.rdd.RDD.iterator(RDD.scala:242)
>>         at 
>> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:70)
>>         at 
>> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41)
>>         at org.apache.spark.scheduler.Task.run(Task.scala:70)
>>         at 
>> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213)
>>         at 
>> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145)
>>         at 
>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615)
>>         at java.lang.Thread.run(Thread.java:722)
>> 
>> Driver stacktrace:
>>         at 
>> org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1266)
>>         at 
>> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1257)
>>         at 
>> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1256)
>>         at 
>> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>>         at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
>>         at 
>> org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1256)
>>         at 
>> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:730)
>>         at 
>> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:730)
>>         at scala.Option.foreach(Option.scala:236)
>>         at 
>> org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:730)
>>         at 
>> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1450)
>>         at 
>> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1411)
>>         at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
>> 
>> Jun 28, 2015 2:10:37 AM INFO: parquet.hadoop.ParquetFileReader: Initiating 
>> action with parallelism: 5
>> ~                                                                            
>>                                                                   
>>> On Jun 26, 2015, at 12:33 PM, Xiangrui Meng <men...@gmail.com> wrote:
>>> 
>>> So you have 100 partitions (blocks). This might be too many for your 
>>> dataset. Try setting a smaller number of blocks, e.g., 32 or 64. When ALS 
>>> starts iterations, you can see the shuffle read/write size from the 
>>> "stages" tab of Spark WebUI. Vary number of blocks and check the numbers 
>>> there. Kyro serializer doesn't help much here. You can try disabling it 
>>> (though I don't think it caused the failure). -Xiangrui
>>> 
>>>> On Fri, Jun 26, 2015 at 11:00 AM, Ayman Farahat <ayman.fara...@yahoo.com> 
>>>> wrote:
>>>> Hello ; 
>>>> I checked on my partitions/storage and here is what I have 
>>>> 
>>>> I have 80 executors
>>>> 5 G per executore. 
>>>> 
>>>> Do i need to set additional params
>>>> say cores
>>>> 
>>>> spark.serializer                 org.apache.spark.serializer.KryoSerializer
>>>> # spark.driver.memory              5g
>>>> # spark.executor.extraJavaOptions  -XX:+PrintGCDetails -Dkey=value 
>>>> -Dnumbers="one two three"
>>>> spark.shuffle.memoryFraction  0.3
>>>> spark.storage.memoryFraction  0.65
>>>> 
>>>> 
>>>> 
>>>> RDD Name   Storage Level   Cached Partitions       Fraction Cached Size in 
>>>> Memory  Size in Tachyon Size on Disk
>>>> ratingBlocks       Memory Deserialized 1x Replicated       257     129%    
>>>> 4.1 GB  0.0 B   0.0 B
>>>> itemOutBlocks      Memory Deserialized 1x Replicated       100     100%    
>>>> 7.3 MB  0.0 B   0.0 B
>>>> 38 Memory Serialized 1x Replicated 193     97%     5.6 GB  0.0 B   0.0 B
>>>> userInBlocks       Memory Deserialized 1x Replicated       100     100%    
>>>> 2.8 GB  0.0 B   0.0 B
>>>> itemFactors-1      Memory Deserialized 1x Replicated       69      69%     
>>>> 8.4 MB  0.0 B   0.0 B
>>>> itemInBlocks       Memory Deserialized 1x Replicated       69      69%     
>>>> 1455.3 MB       0.0 B   0.0 B
>>>> userFactors-1      Memory Deserialized 1x Replicated       100     100%    
>>>> 35.0 GB 0.0 B   0.0 B
>>>> userOutBlocks      Memory Deserialized 1x Replicated       100     100%    
>>>> 1062.7 MB       0.0 B   0.0 B
>>>> 
>>>>> On Jun 26, 2015, at 8:26 AM, Xiangrui Meng <men...@gmail.com> wrote:
>>>>> 
>>>>>  number of CPU cores or less.

Reply via email to