That's correct this is Yarn And spark 1.4 Also using the Anaconda tar for Numpy and other Libs
Sent from my iPhone > On Jun 27, 2015, at 8:50 PM, Sabarish Sasidharan > <sabarish.sasidha...@manthan.com> wrote: > > Are you running on top of YARN? Plus pls provide your infrastructure details. > > Regards > Sab > >> On 28-Jun-2015 8:47 am, "Ayman Farahat" <ayman.fara...@yahoo.com.invalid> >> wrote: >> Hello; >> I tried to adjust the number of blocks by repartitioning the input. >> Here is How I do it; (I am partitioning by users ) >> >> tot = newrdd.map(lambda l: >> (l[1],Rating(int(l[1]),int(l[2]),l[4]))).partitionBy(50).cache() >> ratings = tot.values() >> numIterations =8 >> rank = 80 >> model = ALS.trainImplicit(ratings, rank, numIterations) >> >> >> I have 20 executors >> with 5GM memory per executor. >> When i use 80 factors I keep getting the following problem : >> >> Traceback (most recent call last): >> File "/homes/afarahat/myspark/mm/df4test.py", line 85, in <module> >> model = ALS.trainImplicit(ratings, rank, numIterations) >> File >> "/homes/afarahat/aofspark/share/spark/python/lib/pyspark.zip/pyspark/mllib/recommendation.py", >> line 201, in trainImplicit >> File >> "/homes/afarahat/aofspark/share/spark/python/lib/pyspark.zip/pyspark/mllib/common.py", >> line 128, in callMLlibFunc >> File >> "/homes/afarahat/aofspark/share/spark/python/lib/pyspark.zip/pyspark/mllib/common.py", >> line 121, in callJavaFunc >> File >> "/homes/afarahat/aofspark/share/spark/python/lib/py4j-0.8.2.1-src.zip/py4j/java_gateway.py", >> line 538, in __call__ >> File >> "/homes/afarahat/aofspark/share/spark/python/lib/py4j-0.8.2.1-src.zip/py4j/protocol.py", >> line 300, in get_return_value >> py4j.protocol.Py4JJavaError: An error occurred while calling >> o113.trainImplicitALSModel. >> : org.apache.spark.SparkException: Job aborted due to stage failure: Task 7 >> in stage 36.1 failed 4 times, most recent failure: Lost task 7.3 in stage >> 36.1 (TID 1841, gsbl52746.blue.ygrid.yahoo.com): >> java.io.FileNotFoundException: >> /grid/3/tmp/yarn-local/usercache/afarahat/appcache/application_1433921068880_1027774/blockmgr-0e518470-57d8-472f-8fba-3b593e4dda42/27/rdd_56_24 >> (No such file or directory) >> at java.io.RandomAccessFile.open(Native Method) >> at java.io.RandomAccessFile.<init>(RandomAccessFile.java:233) >> at org.apache.spark.storage.DiskStore.getBytes(DiskStore.scala:110) >> at org.apache.spark.storage.DiskStore.getBytes(DiskStore.scala:134) >> at >> org.apache.spark.storage.BlockManager.doGetLocal(BlockManager.scala:511) >> at >> org.apache.spark.storage.BlockManager.getLocal(BlockManager.scala:429) >> at org.apache.spark.storage.BlockManager.get(BlockManager.scala:617) >> at org.apache.spark.CacheManager.getOrCompute(CacheManager.scala:44) >> at org.apache.spark.rdd.RDD.iterator(RDD.scala:242) >> at >> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:70) >> at >> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41) >> at org.apache.spark.scheduler.Task.run(Task.scala:70) >> at >> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:213) >> at >> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1145) >> at >> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:615) >> at java.lang.Thread.run(Thread.java:722) >> >> Driver stacktrace: >> at >> org.apache.spark.scheduler.DAGScheduler.org$apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1266) >> at >> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1257) >> at >> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1256) >> at >> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) >> at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47) >> at >> org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1256) >> at >> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:730) >> at >> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:730) >> at scala.Option.foreach(Option.scala:236) >> at >> org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:730) >> at >> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1450) >> at >> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1411) >> at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48) >> >> Jun 28, 2015 2:10:37 AM INFO: parquet.hadoop.ParquetFileReader: Initiating >> action with parallelism: 5 >> ~ >> >>> On Jun 26, 2015, at 12:33 PM, Xiangrui Meng <men...@gmail.com> wrote: >>> >>> So you have 100 partitions (blocks). This might be too many for your >>> dataset. Try setting a smaller number of blocks, e.g., 32 or 64. When ALS >>> starts iterations, you can see the shuffle read/write size from the >>> "stages" tab of Spark WebUI. Vary number of blocks and check the numbers >>> there. Kyro serializer doesn't help much here. You can try disabling it >>> (though I don't think it caused the failure). -Xiangrui >>> >>>> On Fri, Jun 26, 2015 at 11:00 AM, Ayman Farahat <ayman.fara...@yahoo.com> >>>> wrote: >>>> Hello ; >>>> I checked on my partitions/storage and here is what I have >>>> >>>> I have 80 executors >>>> 5 G per executore. >>>> >>>> Do i need to set additional params >>>> say cores >>>> >>>> spark.serializer org.apache.spark.serializer.KryoSerializer >>>> # spark.driver.memory 5g >>>> # spark.executor.extraJavaOptions -XX:+PrintGCDetails -Dkey=value >>>> -Dnumbers="one two three" >>>> spark.shuffle.memoryFraction 0.3 >>>> spark.storage.memoryFraction 0.65 >>>> >>>> >>>> >>>> RDD Name Storage Level Cached Partitions Fraction Cached Size in >>>> Memory Size in Tachyon Size on Disk >>>> ratingBlocks Memory Deserialized 1x Replicated 257 129% >>>> 4.1 GB 0.0 B 0.0 B >>>> itemOutBlocks Memory Deserialized 1x Replicated 100 100% >>>> 7.3 MB 0.0 B 0.0 B >>>> 38 Memory Serialized 1x Replicated 193 97% 5.6 GB 0.0 B 0.0 B >>>> userInBlocks Memory Deserialized 1x Replicated 100 100% >>>> 2.8 GB 0.0 B 0.0 B >>>> itemFactors-1 Memory Deserialized 1x Replicated 69 69% >>>> 8.4 MB 0.0 B 0.0 B >>>> itemInBlocks Memory Deserialized 1x Replicated 69 69% >>>> 1455.3 MB 0.0 B 0.0 B >>>> userFactors-1 Memory Deserialized 1x Replicated 100 100% >>>> 35.0 GB 0.0 B 0.0 B >>>> userOutBlocks Memory Deserialized 1x Replicated 100 100% >>>> 1062.7 MB 0.0 B 0.0 B >>>> >>>>> On Jun 26, 2015, at 8:26 AM, Xiangrui Meng <men...@gmail.com> wrote: >>>>> >>>>> number of CPU cores or less.