(Apologies if this comes through twice; I sent it once before I'd confirmed by mailing list subscription.)
I've been having lots of trouble with DataFrames whose columns have dots in their names today. I know that in many places, backticks can be used to quote column names, but the problem I'm running into now is that I can't drop a column that has *no* dots in its name when there are *other* columns in the table that do. Here's some code that tries four ways of dropping the column. One throws a weird exception, one is a semi-expected no-op, and the other two work. public class SparkExample { public static void main(String[] args) { /* Get the spark and sql contexts. Setting spark.ui.enabled to false * keeps Spark from using its built in dependency on Jersey. */ SparkConf conf = new SparkConf() .setMaster("local[*]") .setAppName("test") .set("spark.ui.enabled", "false"); JavaSparkContext sparkContext = new JavaSparkContext(conf); SQLContext sqlContext = new SQLContext(sparkContext); /* Create a schema with two columns, one of which as no dots (a_b), * and the other which does (a.b). */ StructType schema = new StructType(new StructField[] { DataTypes.createStructField("a_b", DataTypes.StringType, false), DataTypes.createStructField("a.c", DataTypes.IntegerType, false) }); /* Create an RDD of Rows, and then convert it into a DataFrame. */ List<Row> rows = Arrays.asList( RowFactory.create("t", 2), RowFactory.create("u", 4)); JavaRDD<Row> rdd = sparkContext.parallelize(rows); DataFrame df = sqlContext.createDataFrame(rdd, schema); /* Four ways to attempt dropping a_b from the DataFrame. * We'll try calling each one of these and looking at * the results (or the resulting exception). */ Function<DataFrame,DataFrame> x1 = d -> d.drop("a_b"); // exception Function<DataFrame,DataFrame> x2 = d -> d.drop("`a_b`"); // no-op Function<DataFrame,DataFrame> x3 = d -> d.drop(d.col("a_b")); // works Function<DataFrame,DataFrame> x4 = d -> d.drop(d.col("`a_b`")); // works int i=0; for (Function<DataFrame,DataFrame> x : Arrays.asList(x1, x2, x3, x4)) { System.out.println("Case "+i++); try { x.apply(df).show(); } catch (Exception e) { e.printStackTrace(System.out); } } } } Here's the output. Case 1 is a no-op, which I think I can understand, because DataFrame.drop(String) doesn't do any resolution (it doesn't need to), so d.drop("`a_b`") doesn't do anything because there's no column whose name is literally "`a_b`". The third and fourth cases work, because DataFrame.col() does do resolution, and both "a_b" and "`a_b`" resolve correctly. But why does the first case fail? And why with the message that it does? Why is it trying to resolve "a.c" at all in this case? Case 0 org.apache.spark.sql.AnalysisException: cannot resolve 'a.c' given input columns a_b, a.c; at org.apache.spark.sql.catalyst.analysis.package$AnalysisErrorAt.failAnalysis(package.scala:42) at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1$$anonfun$apply$2.applyOrElse(CheckAnalysis.scala:60) at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1$$anonfun$apply$2.applyOrElse(CheckAnalysis.scala:57) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:319) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:319) at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:53) at org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:318) at org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressionUp$1(QueryPlan.scala:107) at org.apache.spark.sql.catalyst.plans.QueryPlan.org $apache$spark$sql$catalyst$plans$QueryPlan$$recursiveTransform$2(QueryPlan.scala:117) at org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$org$apache$spark$sql$catalyst$plans$QueryPlan$$recursiveTransform$2$1.apply(QueryPlan.scala:121) at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244) at scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244) at scala.collection.immutable.List.foreach(List.scala:318) at scala.collection.TraversableLike$class.map(TraversableLike.scala:244) at scala.collection.AbstractTraversable.map(Traversable.scala:105) at org.apache.spark.sql.catalyst.plans.QueryPlan.org $apache$spark$sql$catalyst$plans$QueryPlan$$recursiveTransform$2(QueryPlan.scala:121) at org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$2.apply(QueryPlan.scala:125) at scala.collection.Iterator$$anon$11.next(Iterator.scala:328) at scala.collection.Iterator$class.foreach(Iterator.scala:727) at scala.collection.AbstractIterator.foreach(Iterator.scala:1157) at scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48) at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103) at scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47) at scala.collection.TraversableOnce$class.to(TraversableOnce.scala:273) at scala.collection.AbstractIterator.to(Iterator.scala:1157) at scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265) at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157) at scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252) at scala.collection.AbstractIterator.toArray(Iterator.scala:1157) at org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressionsUp(QueryPlan.scala:125) at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1.apply(CheckAnalysis.scala:57) at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1.apply(CheckAnalysis.scala:50) at org.apache.spark.sql.catalyst.trees.TreeNode.foreachUp(TreeNode.scala:105) at org.apache.spark.sql.catalyst.analysis.CheckAnalysis$class.checkAnalysis(CheckAnalysis.scala:50) at org.apache.spark.sql.catalyst.analysis.Analyzer.checkAnalysis(Analyzer.scala:44) at org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:34) at org.apache.spark.sql.DataFrame.<init>(DataFrame.scala:133) at org.apache.spark.sql.DataFrame.org $apache$spark$sql$DataFrame$$withPlan(DataFrame.scala:2165) at org.apache.spark.sql.DataFrame.select(DataFrame.scala:751) at org.apache.spark.sql.DataFrame.drop(DataFrame.scala:1286) at SparkExample.lambda$0(SparkExample.java:45) at SparkExample.main(SparkExample.java:54) Case 1 +---+---+ |a_b|a.c| +---+---+ | t| 2| | u| 4| +---+---+ Case 2 +---+ |a.c| +---+ | 2| | 4| +---+ Case 3 +---+ |a.c| +---+ | 2| | 4| +---+ Thanks in advance, Joshua -- Joshua Taylor, http://www.cs.rpi.edu/~tayloj/