Looks like you found a bug. I've filed them here: SPARK-12987 - Drop fails when columns contain dots <https://issues.apache.org/jira/browse/SPARK-12987> SPARK-12988 - Can't drop columns that contain dots <https://issues.apache.org/jira/browse/SPARK-12988>
On Fri, Jan 22, 2016 at 3:18 PM, Joshua TAYLOR <joshuaaa...@gmail.com> wrote: > (Apologies if this comes through twice; I sent it once before I'd > confirmed by mailing list subscription.) > > > I've been having lots of trouble with DataFrames whose columns have dots > in their names today. I know that in many places, backticks can be used to > quote column names, but the problem I'm running into now is that I can't > drop a column that has *no* dots in its name when there are *other* columns > in the table that do. Here's some code that tries four ways of dropping > the column. One throws a weird exception, one is a semi-expected no-op, > and the other two work. > > public class SparkExample { > public static void main(String[] args) { > /* Get the spark and sql contexts. Setting spark.ui.enabled to > false > * keeps Spark from using its built in dependency on Jersey. */ > SparkConf conf = new SparkConf() > .setMaster("local[*]") > .setAppName("test") > .set("spark.ui.enabled", "false"); > JavaSparkContext sparkContext = new JavaSparkContext(conf); > SQLContext sqlContext = new SQLContext(sparkContext); > > /* Create a schema with two columns, one of which as no dots (a_b), > * and the other which does (a.b). */ > StructType schema = new StructType(new StructField[] { > DataTypes.createStructField("a_b", DataTypes.StringType, > false), > DataTypes.createStructField("a.c", DataTypes.IntegerType, > false) > }); > > /* Create an RDD of Rows, and then convert it into a DataFrame. */ > List<Row> rows = Arrays.asList( > RowFactory.create("t", 2), > RowFactory.create("u", 4)); > JavaRDD<Row> rdd = sparkContext.parallelize(rows); > DataFrame df = sqlContext.createDataFrame(rdd, schema); > > /* Four ways to attempt dropping a_b from the DataFrame. > * We'll try calling each one of these and looking at > * the results (or the resulting exception). */ > Function<DataFrame,DataFrame> x1 = d -> d.drop("a_b"); // > exception > Function<DataFrame,DataFrame> x2 = d -> d.drop("`a_b`"); // > no-op > Function<DataFrame,DataFrame> x3 = d -> d.drop(d.col("a_b")); // > works > Function<DataFrame,DataFrame> x4 = d -> d.drop(d.col("`a_b`")); // > works > > int i=0; > for (Function<DataFrame,DataFrame> x : Arrays.asList(x1, x2, x3, > x4)) { > System.out.println("Case "+i++); > try { > x.apply(df).show(); > } catch (Exception e) { > e.printStackTrace(System.out); > } > } > } > } > > Here's the output. Case 1 is a no-op, which I think I can understand, > because DataFrame.drop(String) doesn't do any resolution (it doesn't need > to), so d.drop("`a_b`") doesn't do anything because there's no column whose > name is literally "`a_b`". The third and fourth cases work, because > DataFrame.col() does do resolution, and both "a_b" and "`a_b`" resolve > correctly. But why does the first case fail? And why with the message > that it does? Why is it trying to resolve "a.c" at all in this case? > > Case 0 > org.apache.spark.sql.AnalysisException: cannot resolve 'a.c' given input > columns a_b, a.c; > at > org.apache.spark.sql.catalyst.analysis.package$AnalysisErrorAt.failAnalysis(package.scala:42) > at > org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1$$anonfun$apply$2.applyOrElse(CheckAnalysis.scala:60) > at > org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1$$anonfun$apply$2.applyOrElse(CheckAnalysis.scala:57) > at > org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:319) > at > org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:319) > at > org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:53) > at > org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:318) > at > org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressionUp$1(QueryPlan.scala:107) > at org.apache.spark.sql.catalyst.plans.QueryPlan.org > $apache$spark$sql$catalyst$plans$QueryPlan$$recursiveTransform$2(QueryPlan.scala:117) > at > org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$org$apache$spark$sql$catalyst$plans$QueryPlan$$recursiveTransform$2$1.apply(QueryPlan.scala:121) > at > scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244) > at > scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:244) > at scala.collection.immutable.List.foreach(List.scala:318) > at > scala.collection.TraversableLike$class.map(TraversableLike.scala:244) > at scala.collection.AbstractTraversable.map(Traversable.scala:105) > at org.apache.spark.sql.catalyst.plans.QueryPlan.org > $apache$spark$sql$catalyst$plans$QueryPlan$$recursiveTransform$2(QueryPlan.scala:121) > at > org.apache.spark.sql.catalyst.plans.QueryPlan$$anonfun$2.apply(QueryPlan.scala:125) > at scala.collection.Iterator$$anon$11.next(Iterator.scala:328) > at scala.collection.Iterator$class.foreach(Iterator.scala:727) > at scala.collection.AbstractIterator.foreach(Iterator.scala:1157) > at > scala.collection.generic.Growable$class.$plus$plus$eq(Growable.scala:48) > at > scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:103) > at > scala.collection.mutable.ArrayBuffer.$plus$plus$eq(ArrayBuffer.scala:47) > at scala.collection.TraversableOnce$class.to > (TraversableOnce.scala:273) > at scala.collection.AbstractIterator.to(Iterator.scala:1157) > at > scala.collection.TraversableOnce$class.toBuffer(TraversableOnce.scala:265) > at scala.collection.AbstractIterator.toBuffer(Iterator.scala:1157) > at > scala.collection.TraversableOnce$class.toArray(TraversableOnce.scala:252) > at scala.collection.AbstractIterator.toArray(Iterator.scala:1157) > at > org.apache.spark.sql.catalyst.plans.QueryPlan.transformExpressionsUp(QueryPlan.scala:125) > at > org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1.apply(CheckAnalysis.scala:57) > at > org.apache.spark.sql.catalyst.analysis.CheckAnalysis$$anonfun$checkAnalysis$1.apply(CheckAnalysis.scala:50) > at > org.apache.spark.sql.catalyst.trees.TreeNode.foreachUp(TreeNode.scala:105) > at > org.apache.spark.sql.catalyst.analysis.CheckAnalysis$class.checkAnalysis(CheckAnalysis.scala:50) > at > org.apache.spark.sql.catalyst.analysis.Analyzer.checkAnalysis(Analyzer.scala:44) > at > org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:34) > at org.apache.spark.sql.DataFrame.<init>(DataFrame.scala:133) > at org.apache.spark.sql.DataFrame.org > $apache$spark$sql$DataFrame$$withPlan(DataFrame.scala:2165) > at org.apache.spark.sql.DataFrame.select(DataFrame.scala:751) > at org.apache.spark.sql.DataFrame.drop(DataFrame.scala:1286) > at SparkExample.lambda$0(SparkExample.java:45) > at SparkExample.main(SparkExample.java:54) > Case 1 > +---+---+ > |a_b|a.c| > +---+---+ > | t| 2| > | u| 4| > +---+---+ > > Case 2 > +---+ > |a.c| > +---+ > | 2| > | 4| > +---+ > > Case 3 > +---+ > |a.c| > +---+ > | 2| > | 4| > +---+ > > > Thanks in advance, > Joshua > > -- > Joshua Taylor, http://www.cs.rpi.edu/~tayloj/ >