Could you use netstat to show the ports that the driver is listening? On Mon, Mar 14, 2016 at 1:45 PM, David Gomez Saavedra <mikr...@gmail.com> wrote:
> hi everyone, > > I'm trying to set up spark streaming using akka with a similar example of > the word count provided. When using spark master in local mode everything > works but when I try to run it the driver and executors using docker I get > the following exception > > > 16/03/14 20:32:03 WARN NettyRpcEndpointRef: Error sending message [message = > Heartbeat(0,[Lscala.Tuple2;@5ad3f40c,BlockManagerId(0, 172.18.0.4, 7005))] in > 1 attempts > org.apache.spark.rpc.RpcTimeoutException: Cannot receive any reply in 10 > seconds. This timeout is controlled by spark.executor.heartbeatInterval > at > org.apache.spark.rpc.RpcTimeout.org$apache$spark$rpc$RpcTimeout$$createRpcTimeoutException(RpcTimeout.scala:48) > at > org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:63) > at > org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:59) > at > scala.runtime.AbstractPartialFunction.apply(AbstractPartialFunction.scala:36) > at scala.util.Failure$$anonfun$recover$1.apply(Try.scala:216) > at scala.util.Try$.apply(Try.scala:192) > at scala.util.Failure.recover(Try.scala:216) > at scala.concurrent.Future$$anonfun$recover$1.apply(Future.scala:324) > at scala.concurrent.Future$$anonfun$recover$1.apply(Future.scala:324) > at scala.concurrent.impl.CallbackRunnable.run(Promise.scala:32) > at > org.spark-project.guava.util.concurrent.MoreExecutors$SameThreadExecutorService.execute(MoreExecutors.java:293) > at > scala.concurrent.impl.ExecutionContextImpl$$anon$1.execute(ExecutionContextImpl.scala:136) > at > scala.concurrent.impl.CallbackRunnable.executeWithValue(Promise.scala:40) > at > scala.concurrent.impl.Promise$DefaultPromise.tryComplete(Promise.scala:248) > at scala.concurrent.Promise$class.complete(Promise.scala:55) > at > scala.concurrent.impl.Promise$DefaultPromise.complete(Promise.scala:153) > at scala.concurrent.Future$$anonfun$map$1.apply(Future.scala:235) > at scala.concurrent.Future$$anonfun$map$1.apply(Future.scala:235) > at scala.concurrent.impl.CallbackRunnable.run(Promise.scala:32) > at > scala.concurrent.BatchingExecutor$Batch$$anonfun$run$1.processBatch$1(BatchingExecutor.scala:63) > at > scala.concurrent.BatchingExecutor$Batch$$anonfun$run$1.apply$mcV$sp(BatchingExecutor.scala:78) > at > scala.concurrent.BatchingExecutor$Batch$$anonfun$run$1.apply(BatchingExecutor.scala:55) > at > scala.concurrent.BatchingExecutor$Batch$$anonfun$run$1.apply(BatchingExecutor.scala:55) > at > scala.concurrent.BlockContext$.withBlockContext(BlockContext.scala:72) > at > scala.concurrent.BatchingExecutor$Batch.run(BatchingExecutor.scala:54) > at > scala.concurrent.Future$InternalCallbackExecutor$.unbatchedExecute(Future.scala:599) > at > scala.concurrent.BatchingExecutor$class.execute(BatchingExecutor.scala:106) > at > scala.concurrent.Future$InternalCallbackExecutor$.execute(Future.scala:597) > at > scala.concurrent.impl.CallbackRunnable.executeWithValue(Promise.scala:40) > at > scala.concurrent.impl.Promise$DefaultPromise.tryComplete(Promise.scala:248) > at scala.concurrent.Promise$class.tryFailure(Promise.scala:112) > at > scala.concurrent.impl.Promise$DefaultPromise.tryFailure(Promise.scala:153) > at > org.apache.spark.rpc.netty.NettyRpcEnv$$anon$1.run(NettyRpcEnv.scala:241) > at > java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511) > at java.util.concurrent.FutureTask.run(FutureTask.java:266) > at > java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$201(ScheduledThreadPoolExecutor.java:180) > at > java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:293) > at > java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) > at > java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) > at java.lang.Thread.run(Thread.java:745) > Caused by: java.util.concurrent.TimeoutException: Cannot receive any reply in > 10 seconds > at > org.apache.spark.rpc.netty.NettyRpcEnv$$anon$1.run(NettyRpcEnv.scala:242) > ... 7 more > > > > Here is the config of the spark streaming app > > val conf = new SparkConf() > .setMaster(sparkMaster) > .setAppName(sparkApp) > .set("spark.cassandra.connection.host", CassandraConfig.host) > .set("spark.logConf", "true") > .set("spark.fileserver.port","7002") > .set("spark.broadcast.port","7003") > .set("spark.replClassServer.port","7004") > .set("spark.blockManager.port","7005") > .set("spark.executor.port","7006") > > .set("spark.broadcast.factory","org.apache.spark.broadcast.HttpBroadcastFactory") > .setJars(sparkJars) > > val sc = new SparkContext(conf) > > val ssc = new StreamingContext(sc, Seconds(5)) > > val tags = ssc.actorStream[String](Props(new > GifteeTagStreamingActor("akka.tcp://spark-engine@spark-engine:9083/user/integrationActor")), > "TagsReceiver") > > > the docker images for master and worker expose those ports. > > master ---> EXPOSE 8080 7077 4040 7001 7002 7003 7004 7005 7006 > worker ---> EXPOSE 8888 8081 4040 7001 7002 7003 7004 7005 7006 > > I'm using those images docker images to run spark jobs without a problem. > I only get errors on the streaming app. > > any pointers on what can be wrong? > > Thank you very much in advanced. > > David > >