I have updated the config since I realized the actor system was listening on driver port + 1. So changed the ports in my program + the docker images
val conf = new SparkConf() .setMaster(sparkMaster) //.setMaster("local[2]") .setAppName(sparkApp) .set("spark.cassandra.connection.host", CassandraConfig.host) .set("spark.logConf", "true") .set("spark.driver.port","7001") .set("spark.driver.host","192.168.33.10") .set("spark.fileserver.port","6002") .set("spark.broadcast.port","6003") .set("spark.replClassServer.port","6004") .set("spark.blockManager.port","6005") .set("spark.executor.port","6006") .set("spark.broadcast.factory","org.apache.spark.broadcast.HttpBroadcastFactory") .setJars(sparkJars) Netstat of my stream app tcp6 0 0 :::6002 :::* LISTEN 9314/java tcp6 0 0 :::6003 :::* LISTEN 9314/java tcp6 0 0 :::6005 :::* LISTEN 9314/java tcp6 0 0 192.168.33.10:7001 :::* LISTEN 9314/java tcp6 0 0 192.168.33.10:7002 :::* LISTEN 9314/java tcp6 0 0 :::4040 :::* LISTEN 9314/java netstat of the master running on docker Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name tcp6 0 0 172.18.0.3:7077 :::* LISTEN - tcp6 0 0 :::8080 :::* LISTEN - tcp6 0 0 172.18.0.3:6066 :::* LISTEN - netstat of worker running on docker Proto Recv-Q Send-Q Local Address Foreign Address State PID/Program name tcp6 0 0 :::8081 :::* LISTEN - tcp6 0 0 :::6005 :::* LISTEN - tcp6 0 0 172.18.0.2:6006 :::* LISTEN - tcp6 0 0 172.18.0.2:8888 :::* LISTEN - so far still no success On Mon, Mar 14, 2016 at 11:14 PM, Shixiong(Ryan) Zhu < shixi...@databricks.com> wrote: > Could you use netstat to show the ports that the driver is listening? > > On Mon, Mar 14, 2016 at 1:45 PM, David Gomez Saavedra <mikr...@gmail.com> > wrote: > >> hi everyone, >> >> I'm trying to set up spark streaming using akka with a similar example of >> the word count provided. When using spark master in local mode everything >> works but when I try to run it the driver and executors using docker I get >> the following exception >> >> >> 16/03/14 20:32:03 WARN NettyRpcEndpointRef: Error sending message [message = >> Heartbeat(0,[Lscala.Tuple2;@5ad3f40c,BlockManagerId(0, 172.18.0.4, 7005))] >> in 1 attempts >> org.apache.spark.rpc.RpcTimeoutException: Cannot receive any reply in 10 >> seconds. This timeout is controlled by spark.executor.heartbeatInterval >> at >> org.apache.spark.rpc.RpcTimeout.org$apache$spark$rpc$RpcTimeout$$createRpcTimeoutException(RpcTimeout.scala:48) >> at >> org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:63) >> at >> org.apache.spark.rpc.RpcTimeout$$anonfun$addMessageIfTimeout$1.applyOrElse(RpcTimeout.scala:59) >> at >> scala.runtime.AbstractPartialFunction.apply(AbstractPartialFunction.scala:36) >> at scala.util.Failure$$anonfun$recover$1.apply(Try.scala:216) >> at scala.util.Try$.apply(Try.scala:192) >> at scala.util.Failure.recover(Try.scala:216) >> at scala.concurrent.Future$$anonfun$recover$1.apply(Future.scala:324) >> at scala.concurrent.Future$$anonfun$recover$1.apply(Future.scala:324) >> at scala.concurrent.impl.CallbackRunnable.run(Promise.scala:32) >> at >> org.spark-project.guava.util.concurrent.MoreExecutors$SameThreadExecutorService.execute(MoreExecutors.java:293) >> at >> scala.concurrent.impl.ExecutionContextImpl$$anon$1.execute(ExecutionContextImpl.scala:136) >> at >> scala.concurrent.impl.CallbackRunnable.executeWithValue(Promise.scala:40) >> at >> scala.concurrent.impl.Promise$DefaultPromise.tryComplete(Promise.scala:248) >> at scala.concurrent.Promise$class.complete(Promise.scala:55) >> at >> scala.concurrent.impl.Promise$DefaultPromise.complete(Promise.scala:153) >> at scala.concurrent.Future$$anonfun$map$1.apply(Future.scala:235) >> at scala.concurrent.Future$$anonfun$map$1.apply(Future.scala:235) >> at scala.concurrent.impl.CallbackRunnable.run(Promise.scala:32) >> at >> scala.concurrent.BatchingExecutor$Batch$$anonfun$run$1.processBatch$1(BatchingExecutor.scala:63) >> at >> scala.concurrent.BatchingExecutor$Batch$$anonfun$run$1.apply$mcV$sp(BatchingExecutor.scala:78) >> at >> scala.concurrent.BatchingExecutor$Batch$$anonfun$run$1.apply(BatchingExecutor.scala:55) >> at >> scala.concurrent.BatchingExecutor$Batch$$anonfun$run$1.apply(BatchingExecutor.scala:55) >> at >> scala.concurrent.BlockContext$.withBlockContext(BlockContext.scala:72) >> at >> scala.concurrent.BatchingExecutor$Batch.run(BatchingExecutor.scala:54) >> at >> scala.concurrent.Future$InternalCallbackExecutor$.unbatchedExecute(Future.scala:599) >> at >> scala.concurrent.BatchingExecutor$class.execute(BatchingExecutor.scala:106) >> at >> scala.concurrent.Future$InternalCallbackExecutor$.execute(Future.scala:597) >> at >> scala.concurrent.impl.CallbackRunnable.executeWithValue(Promise.scala:40) >> at >> scala.concurrent.impl.Promise$DefaultPromise.tryComplete(Promise.scala:248) >> at scala.concurrent.Promise$class.tryFailure(Promise.scala:112) >> at >> scala.concurrent.impl.Promise$DefaultPromise.tryFailure(Promise.scala:153) >> at >> org.apache.spark.rpc.netty.NettyRpcEnv$$anon$1.run(NettyRpcEnv.scala:241) >> at >> java.util.concurrent.Executors$RunnableAdapter.call(Executors.java:511) >> at java.util.concurrent.FutureTask.run(FutureTask.java:266) >> at >> java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.access$201(ScheduledThreadPoolExecutor.java:180) >> at >> java.util.concurrent.ScheduledThreadPoolExecutor$ScheduledFutureTask.run(ScheduledThreadPoolExecutor.java:293) >> at >> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) >> at >> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) >> at java.lang.Thread.run(Thread.java:745) >> Caused by: java.util.concurrent.TimeoutException: Cannot receive any reply >> in 10 seconds >> at >> org.apache.spark.rpc.netty.NettyRpcEnv$$anon$1.run(NettyRpcEnv.scala:242) >> ... 7 more >> >> >> >> Here is the config of the spark streaming app >> >> val conf = new SparkConf() >> .setMaster(sparkMaster) >> .setAppName(sparkApp) >> .set("spark.cassandra.connection.host", CassandraConfig.host) >> .set("spark.logConf", "true") >> .set("spark.fileserver.port","7002") >> .set("spark.broadcast.port","7003") >> .set("spark.replClassServer.port","7004") >> .set("spark.blockManager.port","7005") >> .set("spark.executor.port","7006") >> >> .set("spark.broadcast.factory","org.apache.spark.broadcast.HttpBroadcastFactory") >> .setJars(sparkJars) >> >> val sc = new SparkContext(conf) >> >> val ssc = new StreamingContext(sc, Seconds(5)) >> >> val tags = ssc.actorStream[String](Props(new >> GifteeTagStreamingActor("akka.tcp://spark-engine@spark-engine:9083/user/integrationActor")), >> "TagsReceiver") >> >> >> the docker images for master and worker expose those ports. >> >> master ---> EXPOSE 8080 7077 4040 7001 7002 7003 7004 7005 7006 >> worker ---> EXPOSE 8888 8081 4040 7001 7002 7003 7004 7005 7006 >> >> I'm using those images docker images to run spark jobs without a problem. >> I only get errors on the streaming app. >> >> any pointers on what can be wrong? >> >> Thank you very much in advanced. >> >> David >> >> >