SPARK-15899 <https://issues.apache.org/jira/browse/SPARK-15899> ?
On Wed, Aug 3, 2016 at 11:05 AM, Flavio <marchifla...@gmail.com> wrote: > Hello everyone, > > I am try to run a very easy example but unfortunately I am stuck on the > follow exception: > > Exception in thread "main" java.lang.IllegalArgumentException: > java.net.URISyntaxException: Relative path in absolute URI: file: "absolute > directory" > > I was wondering if anyone got this exception trying to run the examples on > the spark git repo; actually the code I am try to run is the follow: > > > //$example on$ > import org.apache.spark.ml.Pipeline; > import org.apache.spark.ml.PipelineModel; > import org.apache.spark.ml.PipelineStage; > import org.apache.spark.ml.evaluation.RegressionEvaluator; > import org.apache.spark.ml.feature.VectorIndexer; > import org.apache.spark.ml.feature.VectorIndexerModel; > import org.apache.spark.ml.regression.RandomForestRegressionModel; > import org.apache.spark.ml.regression.RandomForestRegressor; > import org.apache.spark.sql.Dataset; > import org.apache.spark.sql.Row; > import org.apache.spark.sql.SparkSession; > //$example off$ > > public class JavaRandomForestRegressorExample { > public static void main(String[] args) { > System.setProperty("hadoop.home.dir", "C:\\winutils"); > > SparkSession spark = SparkSession > .builder() > .master("local[*]") > > .appName("JavaRandomForestRegressorExample") > .getOrCreate(); > > // $example on$ > // Load and parse the data file, converting it to a > DataFrame. > Dataset<Row> data = > spark.read().format("libsvm").load("C:\\data\\sample_libsvm_data.txt"); > > // Automatically identify categorical features, and index > them. > // Set maxCategories so features with > 4 distinct values > are treated as > // continuous. > VectorIndexerModel featureIndexer = new > VectorIndexer().setInputCol("features").setOutputCol("indexedFeatures") > .setMaxCategories(4).fit(data); > > // Split the data into training and test sets (30% held > out for testing) > Dataset<Row>[] splits = data.randomSplit(new double[] { > 0.7, 0.3 }); > Dataset<Row> trainingData = splits[0]; > Dataset<Row> testData = splits[1]; > > // Train a RandomForest model. > RandomForestRegressor rf = new > > RandomForestRegressor().setLabelCol("label").setFeaturesCol("indexedFeatures"); > > // Chain indexer and forest in a Pipeline > Pipeline pipeline = new Pipeline().setStages(new > PipelineStage[] { > featureIndexer, rf }); > > // Train model. This also runs the indexer. > PipelineModel model = pipeline.fit(trainingData); > > // Make predictions. > Dataset<Row> predictions = model.transform(testData); > > // Select example rows to display. > predictions.select("prediction", "label", > "features").show(5); > > // Select (prediction, true label) and compute test error > RegressionEvaluator evaluator = new > RegressionEvaluator().setLabelCol("label").setPredictionCol("prediction") > .setMetricName("rmse"); > double rmse = evaluator.evaluate(predictions); > System.out.println("Root Mean Squared Error (RMSE) on test > data = " + > rmse); > > RandomForestRegressionModel rfModel = > (RandomForestRegressionModel) > (model.stages()[1]); > System.out.println("Learned regression forest model:\n" + > rfModel.toDebugString()); > // $example off$ > > spark.stop(); > } > } > > > Thanks to everyone for reading/answering! > > Flavio > > > > -- > View this message in context: > http://apache-spark-user-list.1001560.n3.nabble.com/java-net-URISyntaxException-Relative-path-in-absolute-URI-tp27466.html > Sent from the Apache Spark User List mailing list archive at Nabble.com. > > --------------------------------------------------------------------- > To unsubscribe e-mail: user-unsubscr...@spark.apache.org > >