Thanks for the reply, well I don't have hadoop installed at all. I am just
running in local as eclipse project so I don't know where I can configure
the path as suggested per JIRA :(

On 3 Aug 2016 19:07, "Ted Yu" <yuzhih...@gmail.com> wrote:

> SPARK-15899 <https://issues.apache.org/jira/browse/SPARK-15899> ?
>
> On Wed, Aug 3, 2016 at 11:05 AM, Flavio <marchifla...@gmail.com> wrote:
>
>> Hello everyone,
>>
>> I am try to run a very easy example but unfortunately I am stuck on the
>> follow exception:
>>
>> Exception in thread "main" java.lang.IllegalArgumentException:
>> java.net.URISyntaxException: Relative path in absolute URI: file:
>> "absolute
>> directory"
>>
>> I was wondering if anyone got this exception trying to run the examples on
>> the spark git repo; actually the code I am try to run is the follow:
>>
>>
>> //$example on$
>> import org.apache.spark.ml.Pipeline;
>> import org.apache.spark.ml.PipelineModel;
>> import org.apache.spark.ml.PipelineStage;
>> import org.apache.spark.ml.evaluation.RegressionEvaluator;
>> import org.apache.spark.ml.feature.VectorIndexer;
>> import org.apache.spark.ml.feature.VectorIndexerModel;
>> import org.apache.spark.ml.regression.RandomForestRegressionModel;
>> import org.apache.spark.ml.regression.RandomForestRegressor;
>> import org.apache.spark.sql.Dataset;
>> import org.apache.spark.sql.Row;
>> import org.apache.spark.sql.SparkSession;
>> //$example off$
>>
>> public class JavaRandomForestRegressorExample {
>>         public static void main(String[] args) {
>>                 System.setProperty("hadoop.home.dir", "C:\\winutils");
>>
>>                 SparkSession spark = SparkSession
>>                                 .builder()
>>                                 .master("local[*]")
>>
>> .appName("JavaRandomForestRegressorExample")
>>                                 .getOrCreate();
>>
>>                 // $example on$
>>                 // Load and parse the data file, converting it to a
>> DataFrame.
>>                 Dataset<Row> data =
>> spark.read().format("libsvm").load("C:\\data\\sample_libsvm_data.txt");
>>
>>                 // Automatically identify categorical features, and index
>> them.
>>                 // Set maxCategories so features with > 4 distinct values
>> are treated as
>>                 // continuous.
>>                 VectorIndexerModel featureIndexer = new
>> VectorIndexer().setInputCol("features").setOutputCol("indexedFeatures")
>>                                 .setMaxCategories(4).fit(data);
>>
>>                 // Split the data into training and test sets (30% held
>> out for testing)
>>                 Dataset<Row>[] splits = data.randomSplit(new double[] {
>> 0.7, 0.3 });
>>                 Dataset<Row> trainingData = splits[0];
>>                 Dataset<Row> testData = splits[1];
>>
>>                 // Train a RandomForest model.
>>                 RandomForestRegressor rf = new
>>
>> RandomForestRegressor().setLabelCol("label").setFeaturesCol("indexedFeatures");
>>
>>                 // Chain indexer and forest in a Pipeline
>>                 Pipeline pipeline = new Pipeline().setStages(new
>> PipelineStage[] {
>> featureIndexer, rf });
>>
>>                 // Train model. This also runs the indexer.
>>                 PipelineModel model = pipeline.fit(trainingData);
>>
>>                 // Make predictions.
>>                 Dataset<Row> predictions = model.transform(testData);
>>
>>                 // Select example rows to display.
>>                 predictions.select("prediction", "label",
>> "features").show(5);
>>
>>                 // Select (prediction, true label) and compute test error
>>                 RegressionEvaluator evaluator = new
>> RegressionEvaluator().setLabelCol("label").setPredictionCol("prediction")
>>                                 .setMetricName("rmse");
>>                 double rmse = evaluator.evaluate(predictions);
>>                 System.out.println("Root Mean Squared Error (RMSE) on
>> test data = " +
>> rmse);
>>
>>                 RandomForestRegressionModel rfModel =
>> (RandomForestRegressionModel)
>> (model.stages()[1]);
>>                 System.out.println("Learned regression forest model:\n" +
>> rfModel.toDebugString());
>>                 // $example off$
>>
>>                 spark.stop();
>>         }
>> }
>>
>>
>> Thanks to everyone for reading/answering!
>>
>> Flavio
>>
>>
>>
>> --
>> View this message in context:
>> http://apache-spark-user-list.1001560.n3.nabble.com/java-net-URISyntaxException-Relative-path-in-absolute-URI-tp27466.html
>> Sent from the Apache Spark User List mailing list archive at Nabble.com.
>>
>> ---------------------------------------------------------------------
>> To unsubscribe e-mail: user-unsubscr...@spark.apache.org
>>
>>
>

Reply via email to