Hi, We are using Spark Standalone 2.4.0 in production and publishing our Scala app using cluster mode. I saw that extra java options passed to the driver don't actually pass. A submit example: *spark-submit --deploy-mode cluster --master spark://<master ip>:7077 --driver-memory 512mb --conf "spark.driver.extraJavaOptions=-XX:+HeapDumpOnOutOfMemoryError" --class App app.jar *
Doesn't pass *-XX:+HeapDumpOnOutOfMemoryError *as a JVM argument, but pass instead *-Dspark.driver.extraJavaOptions=-XX:+HeapDumpOnOutOfMemoryError*I created a test app for it: val spark = SparkSession.builder() .master("local") .appName("testApp").getOrCreate() import spark.implicits._ // get a RuntimeMXBean reference val runtimeMxBean = ManagementFactory.getRuntimeMXBean // get the jvm's input arguments as a list of strings val listOfArguments = runtimeMxBean.getInputArguments // print the arguments listOfArguments.asScala.foreach(a => println(s"ARG: $a")) I see that for client mode I get : ARG: -XX:+HeapDumpOnOutOfMemoryError while in cluster mode I get: ARG: -Dspark.driver.extraJavaOptions=-XX:+HeapDumpOnOutOfMemoryError Would appreciate your help how to work around this issue. Thanks, Alex