Hi Alex, you seem to hit SPARK-26606 [1] which has been fixed in 2.4.1. Could you try it out with latest version?
Thanks, Jungtaek Lim (HeartSaVioR) 1. https://issues.apache.org/jira/browse/SPARK-26606 On Tue, Aug 20, 2019 at 3:43 AM Alex Landa <metalo...@gmail.com> wrote: > Hi, > > We are using Spark Standalone 2.4.0 in production and publishing our Scala > app using cluster mode. > I saw that extra java options passed to the driver don't actually pass. > A submit example: > *spark-submit --deploy-mode cluster --master spark://<master ip>:7077 > --driver-memory 512mb --conf > "spark.driver.extraJavaOptions=-XX:+HeapDumpOnOutOfMemoryError" --class > App app.jar * > > Doesn't pass *-XX:+HeapDumpOnOutOfMemoryError *as a JVM argument, but > pass instead > *-Dspark.driver.extraJavaOptions=-XX:+HeapDumpOnOutOfMemoryError*I > created a test app for it: > > val spark = SparkSession.builder() > .master("local") > .appName("testApp").getOrCreate() > import spark.implicits._ > > // get a RuntimeMXBean reference > val runtimeMxBean = ManagementFactory.getRuntimeMXBean > > // get the jvm's input arguments as a list of strings > val listOfArguments = runtimeMxBean.getInputArguments > > // print the arguments > listOfArguments.asScala.foreach(a => println(s"ARG: $a")) > > > I see that for client mode I get : > ARG: -XX:+HeapDumpOnOutOfMemoryError > while in cluster mode I get: > ARG: -Dspark.driver.extraJavaOptions=-XX:+HeapDumpOnOutOfMemoryError > > Would appreciate your help how to work around this issue. > Thanks, > Alex > > -- Name : Jungtaek Lim Blog : http://medium.com/@heartsavior Twitter : http://twitter.com/heartsavior LinkedIn : http://www.linkedin.com/in/heartsavior