Denis,

I've found the correction here,

https://en.wikipedia.org/wiki/Newton%27s_method

It is useful to accelerate convergence in case of multiple roots, but I guess it is not valid to apply it once to improve accuracy because of the risk of overshoot.

Regards,

Federico Miyara


On 10/01/2019 10:32, CRETE Denis wrote:
Hello,
I tried this correction to the initial roots z:

z-4*(1+z).^4 ./([ones(z),z,z.^2,z.^3]*(C(2:5).*(1:4))')
  ans  =

   -1. - 1.923D-13i
   -1. + 1.189D-12i
   -1. - 1.189D-12i
   -1. - 1.919D-13i

// Evaluation of new error, (and defining Z as the intended root, i.e. here 
Z=-1):
z2=z-4*(z-Z).^4 ./([ones(z),z,z.^2,z.^3]*(C(2:5).*(1:4))')
z2 - Z
  ans  =

    2.233D-08 - 1.923D-13i
   -2.968D-08 + 1.189D-12i
   -2.968D-08 - 1.189D-12i
    2.131D-08 - 1.919D-13i

The factor 4 in the correction is a bit obscure to me, but it seems to work 
also for R=(3+p)^4, again with an accuracy on the roots of a ~2E-8.

HTH
Denis

-----Message d'origine-----
De : users [mailto:[email protected]] De la part de Federico Miyara
Envoyé : jeudi 10 janvier 2019 00:32
À : [email protected]
Objet : [Scilab-users] improve accuracy of roots


Dear all,

Consider this code:

// Define polynomial variable
p = poly(0, 'p', 'roots');

// Define fourth degree polynomial
R = (1 + p)^4;

// Find its roots
z = roots(R)

The result (Scilab 6.0.1) is

   z  =

    -1.0001886
    -1. + 0.0001886i
    -1. - 0.0001886i
    -0.9998114

It should be something closer to

    -1.
    -1.
    -1.
    -1.

Using these roots

C = coeff((p-z(1))*(p-z(2))*(p-z(3))*(p-z(4)))

yield seemingly accurate coefficients
   C  =

     1.   4.   6.   4.   1.


but

C - [1  4  6 4 1]

shows the actual error:

ans  =

     3.775D-15   1.243D-14   1.155D-14   4.441D-15   0.

This is acceptable for the coefficients, but the error in the roots is
too large. Somehow the errors cancel out when  assembling back the
polynomial but each individual zero should be closer to the theoretical
value

Is there some way to improve the accuracy?

Regards,

Federico Miyara




---
El software de antivirus Avast ha analizado este correo electrónico en busca de 
virus.
https://www.avast.com/antivirus

_______________________________________________
users mailing list
[email protected]
http://lists.scilab.org/mailman/listinfo/users
_______________________________________________
users mailing list
[email protected]
http://lists.scilab.org/mailman/listinfo/users



_______________________________________________
users mailing list
[email protected]
http://lists.scilab.org/mailman/listinfo/users

Reply via email to