Jörn,
Thanks for your interest.
Here's the exception when I use the BufferedReader. This exception is
thrown during training. It does a couple "log likelihood" statements
first, before throwing this:
Exception in thread "main" java.lang.IllegalArgumentException: Model not
compatible with name finder!
at
opennlp.tools.namefind.TokenNameFinderModel.<init>(TokenNameFinderModel.java:81)
at
opennlp.tools.namefind.TokenNameFinderModel.<init>(TokenNameFinderModel.java:106)
at opennlp.tools.namefind.NameFinderME.train(NameFinderME.java:374)
at opennlp.tools.namefind.NameFinderME.train(NameFinderME.java:403)
at
walrusthecat.ml.ner.TrainNERModels$.trainModel(TrainNERModels.scala:118)
at
walrusthecat.ml.ner.TrainNERModels$$anonfun$main$2.apply(TrainNERModels.scala:53)
at
walrusthecat.ml.ner.TrainNERModels$$anonfun$main$2.apply(TrainNERModels.scala:49)
at
scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:60)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
at walrusthecat.ml.ner.TrainNERModels$.main(TrainNERModels.scala:49)
at walrusthecat.ml.ner.TrainNERModels.main(TrainNERModels.scala)
And here it is when I use the ByteArrayInputStream. This exception is
thrown when cross-validating, but not when evaluating the training data
stream:
Exception in thread "main" java.io.IOException: Stream not marked
at java.io.BufferedReader.reset(BufferedReader.java:505)
at
opennlp.tools.util.PlainTextByLineStream.reset(PlainTextByLineStream.java:79)
at
opennlp.tools.util.FilterObjectStream.reset(FilterObjectStream.java:43)
at
opennlp.tools.util.FilterObjectStream.reset(FilterObjectStream.java:43)
at
opennlp.tools.namefind.TokenNameFinderCrossValidator$NameToDocumentSampleStream.reset(TokenNameFinderCrossValidator.java:99)
at
opennlp.tools.util.eval.CrossValidationPartitioner.next(CrossValidationPartitioner.java:264)
at
opennlp.tools.namefind.TokenNameFinderCrossValidator.evaluate(TokenNameFinderCrossValidator.java:272)
at
walrusthecat.ml.ner.TrainNERModels$.getResults(TrainNERModels.scala:129)
at
walrusthecat.ml.ner.TrainNERModels$$anonfun$main$2.apply(TrainNERModels.scala:55)
at
walrusthecat.ml.ner.TrainNERModels$$anonfun$main$2.apply(TrainNERModels.scala:47)
at
scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:60)
at scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:47)
at walrusthecat.ml.ner.TrainNERModels$.main(TrainNERModels.scala:47)
at walrusthecat.ml.ner.TrainNERModels.main(TrainNERModels.scala)
On Thu, Nov 21, 2013 at 12:25 AM, Jörn Kottmann <[email protected]> wrote:
> Please post the exception with stack trace here.
>
> Jörn
>
>
>
> On 11/21/2013 07:53 AM, Walrus theCat wrote:
>
>> To update, when I create the stream as above
>> (PlainTextByLineStream(ByteArrayInputStream)) I get the "Stream not
>> marked"
>> error when attempting to cross validate (but not when just evaluating on
>> the training data). When I, instead, create the PlainTextByLineStream on
>> a
>> BufferedReader (see below), I get the error " Model not compatible with
>> name finder!" during training. The result is I can't cross validate,
>> something I really need to do.
>>
>>
>> def linesToStream(lines:Array[String]) = {
>> val charset = Charset.forName(CHARSET)
>> val reader = new BufferedReader(new InputStreamReader(new
>> ByteArrayInputStream(lines.mkString("\n").getBytes(CHARSET))))
>> new NameSampleDataStream(
>> new PlainTextByLineStream(
>> reader))
>> }
>>
>>
>> On Wed, Nov 20, 2013 at 5:42 PM, Walrus theCat <[email protected]
>> >wrote:
>>
>> Thanks for the reply, even though I was kind of rude. I'm using the API.
>>> The evaluator gives me suspiciously high metrics, and the cross validator
>>> fails out as mentioned.
>>>
>>> The code is in Scala:
>>>
>>> def linesToStream(lines:Array[String]) = {
>>> val charset = Charset.forName(CHARSET)
>>> new NameSampleDataStream(
>>> new PlainTextByLineStream(
>>> new
>>> ByteArrayInputStream(lines.mkString("\n").getBytes(CHARSET)), charset))
>>> }
>>>
>>> I train the model with the above:
>>> NameFinderME.train("en", entityName, linesToStream(lines),
>>> TrainingParameters.defaultParams(),
>>> null:Array[Byte], Collections.emptyMap[String, Object]());
>>>
>>> When it comes time to evaluate, I recreate the stream to try to
>>> circumvent
>>> these kinds of problems ("resetting" it also throws the same error):
>>>
>>> val crossValidator = new TokenNameFinderCrossValidator("en",
>>> entityName, TrainingParameters.defaultParams(),
>>> null:Array[Byte], Collections.emptyMap[String, Object](),
>>> listener)
>>> crossValidator.evaluate(sampleStream, 10)
>>>
>>> Thanks
>>>
>>>
>>>
>>> On Wed, Nov 20, 2013 at 3:43 PM, William Colen <[email protected]>
>>> wrote:
>>>
>>> Are you using the API or the command line tools? Can you send a code
>>>> snippet showing how do you load the ObjectStream?
>>>>
>>>>
>>>> 2013/11/20 Walrus theCat <[email protected]>
>>>>
>>>> I'm getting "java.io.IOException: Stream not marked" when calling
>>>>> TokenNameFinderCrossValidator.evaluate with a NameSampleDataStream.
>>>>>
>>>> This
>>>>
>>>>> works when I use a TokenNameFinderEvaluator instead. I'm led to
>>>>> believe
>>>>> that .reset isn't called on the stream in the CrossValidator.
>>>>>
>>>>>
>>>
>