Thanks Jeff,
is there a workaround in order to make it work now?

Il giorno gio 5 lug 2018 alle ore 12:42 Jeff Zhang <zjf...@gmail.com> ha
scritto:

>
> This is due to hadoop version used in embedded spark is 2.3 which is too
> lower. I created https://issues.apache.org/jira/browse/ZEPPELIN-3586 for
> this issue. Suppose it will be fixed in o.8.1
>
>
>
> Andrea Santurbano <sant...@gmail.com>于2018年7月5日周四 下午3:35写道:
>
>> I agree that is not for production, but if want to do a simple blog post
>> (and that's what I'm doing) I think it's a well suited solution.
>> Is it possible to fix this?
>> Thanks
>> Andrea
>>
>> Il giorno gio 5 lug 2018 alle ore 02:29 Jeff Zhang <zjf...@gmail.com> ha
>> scritto:
>>
>>>
>>> This might be due to the embedded spark version.  I would recommend you
>>> to specify SPARK_HOME instead of using the embedded spark, the embedded
>>> spark is not for production.
>>>
>>>
>>> Andrea Santurbano <sant...@gmail.com>于2018年7月5日周四 上午12:07写道:
>>>
>>>> I have the same issue...
>>>> Il giorno mar 3 lug 2018 alle 23:18 Adamantios Corais <
>>>> adamantios.cor...@gmail.com> ha scritto:
>>>>
>>>>> Hi Jeff, I am using the embedded Spark.
>>>>>
>>>>> FYI, this is how I start the dockerized (yet old) version of Zeppelin
>>>>> that works as expected.
>>>>>
>>>>> #!/bin/bash
>>>>>> docker run --rm \
>>>>>> --name zepelin \
>>>>>> -p 127.0.0.1:9090:8080 \
>>>>>> -p 127.0.0.1:5050:4040 \
>>>>>> -v $(pwd):/zeppelin/notebook \
>>>>>> apache/zeppelin:0.7.3
>>>>>
>>>>>
>>>>> And this is how I start the binarized (yet stable) version of Zeppelin 
>>>>> that
>>>>> is supposed to work (but it doesn't).
>>>>>
>>>>> #!/bin/bash
>>>>>> wget
>>>>>> http://www-eu.apache.org/dist/zeppelin/zeppelin-0.8.0/zeppelin-0.8.0-bin-all.tgz
>>>>>> tar  zxvf zeppelin-0.8.0-bin-all.tgz
>>>>>> cd   ./zeppelin-0.8.0-bin-all/
>>>>>> bash ./bin/zeppelin.sh
>>>>>
>>>>>
>>>>> Thanks.
>>>>>
>>>>>
>>>>>
>>>>>
>>>>> *// **Adamantios Corais*
>>>>>
>>>>> On Tue, Jul 3, 2018 at 2:24 AM, Jeff Zhang <zjf...@gmail.com> wrote:
>>>>>
>>>>>>
>>>>>> Do you use the embeded spark or specify SPARK_HOME ? If you set
>>>>>> SPARK_HOME, which spark version and hadoop version do you use ?
>>>>>>
>>>>>>
>>>>>>
>>>>>> Adamantios Corais <adamantios.cor...@gmail.com>于2018年7月3日周二
>>>>>> 上午12:32写道:
>>>>>>
>>>>>>> Hi,
>>>>>>>
>>>>>>> I have downloaded the latest binary package of Zeppelin (ver.
>>>>>>> 0.8.0), extracted, and started as follows: `./bin/zeppelin.sh`
>>>>>>>
>>>>>>> Next, I tried a very simple example:
>>>>>>>
>>>>>>> `spark.read.parquet("./bin/userdata1.parquet").show()`
>>>>>>>
>>>>>>> Which unfortunately returns the following error. Note that the same
>>>>>>> example works fine with the official docker version of Zeppelin (ver.
>>>>>>> 0.7.3). Any ideas?
>>>>>>>
>>>>>>> org.apache.spark.SparkException: Job aborted due to stage failure:
>>>>>>>> Task 0 in stage 7.0 failed 1 times, most recent failure: Lost task 0.0 
>>>>>>>> in
>>>>>>>> stage 7.0 (TID 7, localhost, executor driver): 
>>>>>>>> java.lang.NoSuchMethodError:
>>>>>>>> org.apache.hadoop.fs.FileSystem$Statistics.getThreadStatistics()Lorg/apache/hadoop/fs/FileSystem$Statistics$StatisticsData;
>>>>>>>> at
>>>>>>>> org.apache.spark.deploy.SparkHadoopUtil$$anonfun$1$$anonfun$apply$mcJ$sp$1.apply(SparkHadoopUtil.scala:149)
>>>>>>>> at
>>>>>>>> org.apache.spark.deploy.SparkHadoopUtil$$anonfun$1$$anonfun$apply$mcJ$sp$1.apply(SparkHadoopUtil.scala:149)
>>>>>>>> at
>>>>>>>> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
>>>>>>>> at
>>>>>>>> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
>>>>>>>> at scala.collection.Iterator$class.foreach(Iterator.scala:893)
>>>>>>>> at scala.collection.AbstractIterator.foreach(Iterator.scala:1336)
>>>>>>>> at
>>>>>>>> scala.collection.IterableLike$class.foreach(IterableLike.scala:72)
>>>>>>>> at scala.collection.AbstractIterable.foreach(Iterable.scala:54)
>>>>>>>> at
>>>>>>>> scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
>>>>>>>> at scala.collection.AbstractTraversable.map(Traversable.scala:104)
>>>>>>>> at
>>>>>>>> org.apache.spark.deploy.SparkHadoopUtil$$anonfun$1.apply$mcJ$sp(SparkHadoopUtil.scala:149)
>>>>>>>> at
>>>>>>>> org.apache.spark.deploy.SparkHadoopUtil.getFSBytesReadOnThreadCallback(SparkHadoopUtil.scala:150)
>>>>>>>> at
>>>>>>>> org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.<init>(FileScanRDD.scala:78)
>>>>>>>> at
>>>>>>>> org.apache.spark.sql.execution.datasources.FileScanRDD.compute(FileScanRDD.scala:71)
>>>>>>>> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
>>>>>>>> at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
>>>>>>>> at
>>>>>>>> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
>>>>>>>> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
>>>>>>>> at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
>>>>>>>> at
>>>>>>>> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
>>>>>>>> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
>>>>>>>> at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
>>>>>>>> at
>>>>>>>> org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
>>>>>>>> at org.apache.spark.scheduler.Task.run(Task.scala:108)
>>>>>>>> at
>>>>>>>> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:335)
>>>>>>>> at
>>>>>>>> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
>>>>>>>> at
>>>>>>>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
>>>>>>>> at java.lang.Thread.run(Thread.java:748)
>>>>>>>> Driver stacktrace:
>>>>>>>>   at org.apache.spark.scheduler.DAGScheduler.org
>>>>>>>> $apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1499)
>>>>>>>>   at
>>>>>>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1487)
>>>>>>>>   at
>>>>>>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1486)
>>>>>>>>   at
>>>>>>>> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>>>>>>>>   at
>>>>>>>> scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
>>>>>>>>   at
>>>>>>>> org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1486)
>>>>>>>>   at
>>>>>>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:814)
>>>>>>>>   at
>>>>>>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:814)
>>>>>>>>   at scala.Option.foreach(Option.scala:257)
>>>>>>>>   at
>>>>>>>> org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:814)
>>>>>>>>   at
>>>>>>>> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1714)
>>>>>>>>   at
>>>>>>>> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1669)
>>>>>>>>   at
>>>>>>>> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1658)
>>>>>>>>   at org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
>>>>>>>>   at
>>>>>>>> org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:630)
>>>>>>>>   at org.apache.spark.SparkContext.runJob(SparkContext.scala:2022)
>>>>>>>>   at org.apache.spark.SparkContext.runJob(SparkContext.scala:2043)
>>>>>>>>   at org.apache.spark.SparkContext.runJob(SparkContext.scala:2062)
>>>>>>>>   at
>>>>>>>> org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:336)
>>>>>>>>   at
>>>>>>>> org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:38)
>>>>>>>>   at org.apache.spark.sql.Dataset.org
>>>>>>>> $apache$spark$sql$Dataset$$collectFromPlan(Dataset.scala:2853)
>>>>>>>>   at
>>>>>>>> org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2153)
>>>>>>>>   at
>>>>>>>> org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2153)
>>>>>>>>   at
>>>>>>>> org.apache.spark.sql.Dataset$$anonfun$55.apply(Dataset.scala:2837)
>>>>>>>>   at
>>>>>>>> org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:65)
>>>>>>>>   at org.apache.spark.sql.Dataset.withAction(Dataset.scala:2836)
>>>>>>>>   at org.apache.spark.sql.Dataset.head(Dataset.scala:2153)
>>>>>>>>   at org.apache.spark.sql.Dataset.take(Dataset.scala:2366)
>>>>>>>>   at org.apache.spark.sql.Dataset.showString(Dataset.scala:245)
>>>>>>>>   at org.apache.spark.sql.Dataset.show(Dataset.scala:644)
>>>>>>>>   at org.apache.spark.sql.Dataset.show(Dataset.scala:603)
>>>>>>>>   at org.apache.spark.sql.Dataset.show(Dataset.scala:612)
>>>>>>>>   ... 52 elided
>>>>>>>> Caused by: java.lang.NoSuchMethodError:
>>>>>>>> org.apache.hadoop.fs.FileSystem$Statistics.getThreadStatistics()Lorg/apache/hadoop/fs/FileSystem$Statistics$StatisticsData;
>>>>>>>>   at
>>>>>>>> org.apache.spark.deploy.SparkHadoopUtil$$anonfun$1$$anonfun$apply$mcJ$sp$1.apply(SparkHadoopUtil.scala:149)
>>>>>>>>   at
>>>>>>>> org.apache.spark.deploy.SparkHadoopUtil$$anonfun$1$$anonfun$apply$mcJ$sp$1.apply(SparkHadoopUtil.scala:149)
>>>>>>>>   at
>>>>>>>> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
>>>>>>>>   at
>>>>>>>> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
>>>>>>>>   at scala.collection.Iterator$class.foreach(Iterator.scala:893)
>>>>>>>>   at scala.collection.AbstractIterator.foreach(Iterator.scala:1336)
>>>>>>>>   at
>>>>>>>> scala.collection.IterableLike$class.foreach(IterableLike.scala:72)
>>>>>>>>   at scala.collection.AbstractIterable.foreach(Iterable.scala:54)
>>>>>>>>   at
>>>>>>>> scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
>>>>>>>>   at scala.collection.AbstractTraversable.map(Traversable.scala:104)
>>>>>>>>   at
>>>>>>>> org.apache.spark.deploy.SparkHadoopUtil$$anonfun$1.apply$mcJ$sp(SparkHadoopUtil.scala:149)
>>>>>>>>   at
>>>>>>>> org.apache.spark.deploy.SparkHadoopUtil.getFSBytesReadOnThreadCallback(SparkHadoopUtil.scala:150)
>>>>>>>>   at
>>>>>>>> org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.<init>(FileScanRDD.scala:78)
>>>>>>>>   at
>>>>>>>> org.apache.spark.sql.execution.datasources.FileScanRDD.compute(FileScanRDD.scala:71)
>>>>>>>>   at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
>>>>>>>>   at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
>>>>>>>>   at
>>>>>>>> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
>>>>>>>>   at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
>>>>>>>>   at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
>>>>>>>>   at
>>>>>>>> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
>>>>>>>>   at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
>>>>>>>>   at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
>>>>>>>>   at
>>>>>>>> org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
>>>>>>>>   at org.apache.spark.scheduler.Task.run(Task.scala:108)
>>>>>>>>   at
>>>>>>>> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:335)
>>>>>>>>   ... 3 more
>>>>>>>
>>>>>>>
>>>>>>>
>>>>>

Reply via email to