Thanks Adamantios,
I created a Dockerfile in order to aoutomate the process, feel free to use
it:

https://gist.github.com/conker84/4ffc9a2f0125c808b4dfcf3b7d70b043



Il giorno gio 5 lug 2018 alle ore 13:00 Adamantios Corais <
adamantios.cor...@gmail.com> ha scritto:

> Hi Andrea,
>
> The following workaround works for me (but maybe there are other
> alternatives too):
>
> - downloaded spark spark-2.3.1-bin-hadoop2.7
> - renamed the zeppelin-env.sh.template to zeppelin-env.sh
> - appended the following line in the above file: export
> SPARK_HOME=../../spark-2.3.1-bin-hadoop2.7/
>
> Hope this helps,
>
>
>
>
> *// **Adamantios Corais*
>
> On Thu, Jul 5, 2018 at 1:51 PM, Andrea Santurbano <sant...@gmail.com>
> wrote:
>
>> Thanks Jeff,
>> is there a workaround in order to make it work now?
>>
>> Il giorno gio 5 lug 2018 alle ore 12:42 Jeff Zhang <zjf...@gmail.com> ha
>> scritto:
>>
>>>
>>> This is due to hadoop version used in embedded spark is 2.3 which is too
>>> lower. I created https://issues.apache.org/jira/browse/ZEPPELIN-3586 for
>>> this issue. Suppose it will be fixed in o.8.1
>>>
>>>
>>>
>>> Andrea Santurbano <sant...@gmail.com>于2018年7月5日周四 下午3:35写道:
>>>
>>>> I agree that is not for production, but if want to do a simple blog
>>>> post (and that's what I'm doing) I think it's a well suited solution.
>>>> Is it possible to fix this?
>>>> Thanks
>>>> Andrea
>>>>
>>>> Il giorno gio 5 lug 2018 alle ore 02:29 Jeff Zhang <zjf...@gmail.com>
>>>> ha scritto:
>>>>
>>>>>
>>>>> This might be due to the embedded spark version.  I would recommend
>>>>> you to specify SPARK_HOME instead of using the embedded spark, the 
>>>>> embedded
>>>>> spark is not for production.
>>>>>
>>>>>
>>>>> Andrea Santurbano <sant...@gmail.com>于2018年7月5日周四 上午12:07写道:
>>>>>
>>>>>> I have the same issue...
>>>>>> Il giorno mar 3 lug 2018 alle 23:18 Adamantios Corais <
>>>>>> adamantios.cor...@gmail.com> ha scritto:
>>>>>>
>>>>>>> Hi Jeff, I am using the embedded Spark.
>>>>>>>
>>>>>>> FYI, this is how I start the dockerized (yet old) version of
>>>>>>> Zeppelin that works as expected.
>>>>>>>
>>>>>>> #!/bin/bash
>>>>>>>> docker run --rm \
>>>>>>>> --name zepelin \
>>>>>>>> -p 127.0.0.1:9090:8080 \
>>>>>>>> -p 127.0.0.1:5050:4040 \
>>>>>>>> -v $(pwd):/zeppelin/notebook \
>>>>>>>> apache/zeppelin:0.7.3
>>>>>>>
>>>>>>>
>>>>>>> And this is how I start the binarized (yet stable) version of
>>>>>>> Zeppelin that is supposed to work (but it doesn't).
>>>>>>>
>>>>>>> #!/bin/bash
>>>>>>>> wget
>>>>>>>> http://www-eu.apache.org/dist/zeppelin/zeppelin-0.8.0/zeppelin-0.8.0-bin-all.tgz
>>>>>>>> tar  zxvf zeppelin-0.8.0-bin-all.tgz
>>>>>>>> cd   ./zeppelin-0.8.0-bin-all/
>>>>>>>> bash ./bin/zeppelin.sh
>>>>>>>
>>>>>>>
>>>>>>> Thanks.
>>>>>>>
>>>>>>>
>>>>>>>
>>>>>>>
>>>>>>> *// **Adamantios Corais*
>>>>>>>
>>>>>>> On Tue, Jul 3, 2018 at 2:24 AM, Jeff Zhang <zjf...@gmail.com> wrote:
>>>>>>>
>>>>>>>>
>>>>>>>> Do you use the embeded spark or specify SPARK_HOME ? If you set
>>>>>>>> SPARK_HOME, which spark version and hadoop version do you use ?
>>>>>>>>
>>>>>>>>
>>>>>>>>
>>>>>>>> Adamantios Corais <adamantios.cor...@gmail.com>于2018年7月3日周二
>>>>>>>> 上午12:32写道:
>>>>>>>>
>>>>>>>>> Hi,
>>>>>>>>>
>>>>>>>>> I have downloaded the latest binary package of Zeppelin (ver.
>>>>>>>>> 0.8.0), extracted, and started as follows: `./bin/zeppelin.sh`
>>>>>>>>>
>>>>>>>>> Next, I tried a very simple example:
>>>>>>>>>
>>>>>>>>> `spark.read.parquet("./bin/userdata1.parquet").show()`
>>>>>>>>>
>>>>>>>>> Which unfortunately returns the following error. Note that the
>>>>>>>>> same example works fine with the official docker version of Zeppelin 
>>>>>>>>> (ver.
>>>>>>>>> 0.7.3). Any ideas?
>>>>>>>>>
>>>>>>>>> org.apache.spark.SparkException: Job aborted due to stage failure:
>>>>>>>>>> Task 0 in stage 7.0 failed 1 times, most recent failure: Lost task 
>>>>>>>>>> 0.0 in
>>>>>>>>>> stage 7.0 (TID 7, localhost, executor driver): 
>>>>>>>>>> java.lang.NoSuchMethodError:
>>>>>>>>>> org.apache.hadoop.fs.FileSystem$Statistics.getThreadStatistics()Lorg/apache/hadoop/fs/FileSystem$Statistics$StatisticsData;
>>>>>>>>>> at
>>>>>>>>>> org.apache.spark.deploy.SparkHadoopUtil$$anonfun$1$$anonfun$apply$mcJ$sp$1.apply(SparkHadoopUtil.scala:149)
>>>>>>>>>> at
>>>>>>>>>> org.apache.spark.deploy.SparkHadoopUtil$$anonfun$1$$anonfun$apply$mcJ$sp$1.apply(SparkHadoopUtil.scala:149)
>>>>>>>>>> at
>>>>>>>>>> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
>>>>>>>>>> at
>>>>>>>>>> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
>>>>>>>>>> at scala.collection.Iterator$class.foreach(Iterator.scala:893)
>>>>>>>>>> at scala.collection.AbstractIterator.foreach(Iterator.scala:1336)
>>>>>>>>>> at
>>>>>>>>>> scala.collection.IterableLike$class.foreach(IterableLike.scala:72)
>>>>>>>>>> at scala.collection.AbstractIterable.foreach(Iterable.scala:54)
>>>>>>>>>> at
>>>>>>>>>> scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
>>>>>>>>>> at scala.collection.AbstractTraversable.map(Traversable.scala:104)
>>>>>>>>>> at
>>>>>>>>>> org.apache.spark.deploy.SparkHadoopUtil$$anonfun$1.apply$mcJ$sp(SparkHadoopUtil.scala:149)
>>>>>>>>>> at
>>>>>>>>>> org.apache.spark.deploy.SparkHadoopUtil.getFSBytesReadOnThreadCallback(SparkHadoopUtil.scala:150)
>>>>>>>>>> at
>>>>>>>>>> org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.<init>(FileScanRDD.scala:78)
>>>>>>>>>> at
>>>>>>>>>> org.apache.spark.sql.execution.datasources.FileScanRDD.compute(FileScanRDD.scala:71)
>>>>>>>>>> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
>>>>>>>>>> at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
>>>>>>>>>> at
>>>>>>>>>> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
>>>>>>>>>> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
>>>>>>>>>> at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
>>>>>>>>>> at
>>>>>>>>>> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
>>>>>>>>>> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
>>>>>>>>>> at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
>>>>>>>>>> at
>>>>>>>>>> org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
>>>>>>>>>> at org.apache.spark.scheduler.Task.run(Task.scala:108)
>>>>>>>>>> at
>>>>>>>>>> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:335)
>>>>>>>>>> at
>>>>>>>>>> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149)
>>>>>>>>>> at
>>>>>>>>>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624)
>>>>>>>>>> at java.lang.Thread.run(Thread.java:748)
>>>>>>>>>> Driver stacktrace:
>>>>>>>>>>   at org.apache.spark.scheduler.DAGScheduler.org
>>>>>>>>>> $apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1499)
>>>>>>>>>>   at
>>>>>>>>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1487)
>>>>>>>>>>   at
>>>>>>>>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1486)
>>>>>>>>>>   at
>>>>>>>>>> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59)
>>>>>>>>>>   at
>>>>>>>>>> scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48)
>>>>>>>>>>   at
>>>>>>>>>> org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1486)
>>>>>>>>>>   at
>>>>>>>>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:814)
>>>>>>>>>>   at
>>>>>>>>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:814)
>>>>>>>>>>   at scala.Option.foreach(Option.scala:257)
>>>>>>>>>>   at
>>>>>>>>>> org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:814)
>>>>>>>>>>   at
>>>>>>>>>> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1714)
>>>>>>>>>>   at
>>>>>>>>>> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1669)
>>>>>>>>>>   at
>>>>>>>>>> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1658)
>>>>>>>>>>   at
>>>>>>>>>> org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48)
>>>>>>>>>>   at
>>>>>>>>>> org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:630)
>>>>>>>>>>   at org.apache.spark.SparkContext.runJob(SparkContext.scala:2022)
>>>>>>>>>>   at org.apache.spark.SparkContext.runJob(SparkContext.scala:2043)
>>>>>>>>>>   at org.apache.spark.SparkContext.runJob(SparkContext.scala:2062)
>>>>>>>>>>   at
>>>>>>>>>> org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:336)
>>>>>>>>>>   at
>>>>>>>>>> org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:38)
>>>>>>>>>>   at org.apache.spark.sql.Dataset.org
>>>>>>>>>> $apache$spark$sql$Dataset$$collectFromPlan(Dataset.scala:2853)
>>>>>>>>>>   at
>>>>>>>>>> org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2153)
>>>>>>>>>>   at
>>>>>>>>>> org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2153)
>>>>>>>>>>   at
>>>>>>>>>> org.apache.spark.sql.Dataset$$anonfun$55.apply(Dataset.scala:2837)
>>>>>>>>>>   at
>>>>>>>>>> org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:65)
>>>>>>>>>>   at org.apache.spark.sql.Dataset.withAction(Dataset.scala:2836)
>>>>>>>>>>   at org.apache.spark.sql.Dataset.head(Dataset.scala:2153)
>>>>>>>>>>   at org.apache.spark.sql.Dataset.take(Dataset.scala:2366)
>>>>>>>>>>   at org.apache.spark.sql.Dataset.showString(Dataset.scala:245)
>>>>>>>>>>   at org.apache.spark.sql.Dataset.show(Dataset.scala:644)
>>>>>>>>>>   at org.apache.spark.sql.Dataset.show(Dataset.scala:603)
>>>>>>>>>>   at org.apache.spark.sql.Dataset.show(Dataset.scala:612)
>>>>>>>>>>   ... 52 elided
>>>>>>>>>> Caused by: java.lang.NoSuchMethodError:
>>>>>>>>>> org.apache.hadoop.fs.FileSystem$Statistics.getThreadStatistics()Lorg/apache/hadoop/fs/FileSystem$Statistics$StatisticsData;
>>>>>>>>>>   at
>>>>>>>>>> org.apache.spark.deploy.SparkHadoopUtil$$anonfun$1$$anonfun$apply$mcJ$sp$1.apply(SparkHadoopUtil.scala:149)
>>>>>>>>>>   at
>>>>>>>>>> org.apache.spark.deploy.SparkHadoopUtil$$anonfun$1$$anonfun$apply$mcJ$sp$1.apply(SparkHadoopUtil.scala:149)
>>>>>>>>>>   at
>>>>>>>>>> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
>>>>>>>>>>   at
>>>>>>>>>> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234)
>>>>>>>>>>   at scala.collection.Iterator$class.foreach(Iterator.scala:893)
>>>>>>>>>>   at
>>>>>>>>>> scala.collection.AbstractIterator.foreach(Iterator.scala:1336)
>>>>>>>>>>   at
>>>>>>>>>> scala.collection.IterableLike$class.foreach(IterableLike.scala:72)
>>>>>>>>>>   at scala.collection.AbstractIterable.foreach(Iterable.scala:54)
>>>>>>>>>>   at
>>>>>>>>>> scala.collection.TraversableLike$class.map(TraversableLike.scala:234)
>>>>>>>>>>   at
>>>>>>>>>> scala.collection.AbstractTraversable.map(Traversable.scala:104)
>>>>>>>>>>   at
>>>>>>>>>> org.apache.spark.deploy.SparkHadoopUtil$$anonfun$1.apply$mcJ$sp(SparkHadoopUtil.scala:149)
>>>>>>>>>>   at
>>>>>>>>>> org.apache.spark.deploy.SparkHadoopUtil.getFSBytesReadOnThreadCallback(SparkHadoopUtil.scala:150)
>>>>>>>>>>   at
>>>>>>>>>> org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.<init>(FileScanRDD.scala:78)
>>>>>>>>>>   at
>>>>>>>>>> org.apache.spark.sql.execution.datasources.FileScanRDD.compute(FileScanRDD.scala:71)
>>>>>>>>>>   at
>>>>>>>>>> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
>>>>>>>>>>   at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
>>>>>>>>>>   at
>>>>>>>>>> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
>>>>>>>>>>   at
>>>>>>>>>> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
>>>>>>>>>>   at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
>>>>>>>>>>   at
>>>>>>>>>> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38)
>>>>>>>>>>   at
>>>>>>>>>> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323)
>>>>>>>>>>   at org.apache.spark.rdd.RDD.iterator(RDD.scala:287)
>>>>>>>>>>   at
>>>>>>>>>> org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87)
>>>>>>>>>>   at org.apache.spark.scheduler.Task.run(Task.scala:108)
>>>>>>>>>>   at
>>>>>>>>>> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:335)
>>>>>>>>>>   ... 3 more
>>>>>>>>>
>>>>>>>>>
>>>>>>>>>
>>>>>>>
>

Reply via email to