Thanks Adamantios, I created a Dockerfile in order to aoutomate the process, feel free to use it:
https://gist.github.com/conker84/4ffc9a2f0125c808b4dfcf3b7d70b043 Il giorno gio 5 lug 2018 alle ore 13:00 Adamantios Corais < adamantios.cor...@gmail.com> ha scritto: > Hi Andrea, > > The following workaround works for me (but maybe there are other > alternatives too): > > - downloaded spark spark-2.3.1-bin-hadoop2.7 > - renamed the zeppelin-env.sh.template to zeppelin-env.sh > - appended the following line in the above file: export > SPARK_HOME=../../spark-2.3.1-bin-hadoop2.7/ > > Hope this helps, > > > > > *// **Adamantios Corais* > > On Thu, Jul 5, 2018 at 1:51 PM, Andrea Santurbano <sant...@gmail.com> > wrote: > >> Thanks Jeff, >> is there a workaround in order to make it work now? >> >> Il giorno gio 5 lug 2018 alle ore 12:42 Jeff Zhang <zjf...@gmail.com> ha >> scritto: >> >>> >>> This is due to hadoop version used in embedded spark is 2.3 which is too >>> lower. I created https://issues.apache.org/jira/browse/ZEPPELIN-3586 for >>> this issue. Suppose it will be fixed in o.8.1 >>> >>> >>> >>> Andrea Santurbano <sant...@gmail.com>于2018年7月5日周四 下午3:35写道: >>> >>>> I agree that is not for production, but if want to do a simple blog >>>> post (and that's what I'm doing) I think it's a well suited solution. >>>> Is it possible to fix this? >>>> Thanks >>>> Andrea >>>> >>>> Il giorno gio 5 lug 2018 alle ore 02:29 Jeff Zhang <zjf...@gmail.com> >>>> ha scritto: >>>> >>>>> >>>>> This might be due to the embedded spark version. I would recommend >>>>> you to specify SPARK_HOME instead of using the embedded spark, the >>>>> embedded >>>>> spark is not for production. >>>>> >>>>> >>>>> Andrea Santurbano <sant...@gmail.com>于2018年7月5日周四 上午12:07写道: >>>>> >>>>>> I have the same issue... >>>>>> Il giorno mar 3 lug 2018 alle 23:18 Adamantios Corais < >>>>>> adamantios.cor...@gmail.com> ha scritto: >>>>>> >>>>>>> Hi Jeff, I am using the embedded Spark. >>>>>>> >>>>>>> FYI, this is how I start the dockerized (yet old) version of >>>>>>> Zeppelin that works as expected. >>>>>>> >>>>>>> #!/bin/bash >>>>>>>> docker run --rm \ >>>>>>>> --name zepelin \ >>>>>>>> -p 127.0.0.1:9090:8080 \ >>>>>>>> -p 127.0.0.1:5050:4040 \ >>>>>>>> -v $(pwd):/zeppelin/notebook \ >>>>>>>> apache/zeppelin:0.7.3 >>>>>>> >>>>>>> >>>>>>> And this is how I start the binarized (yet stable) version of >>>>>>> Zeppelin that is supposed to work (but it doesn't). >>>>>>> >>>>>>> #!/bin/bash >>>>>>>> wget >>>>>>>> http://www-eu.apache.org/dist/zeppelin/zeppelin-0.8.0/zeppelin-0.8.0-bin-all.tgz >>>>>>>> tar zxvf zeppelin-0.8.0-bin-all.tgz >>>>>>>> cd ./zeppelin-0.8.0-bin-all/ >>>>>>>> bash ./bin/zeppelin.sh >>>>>>> >>>>>>> >>>>>>> Thanks. >>>>>>> >>>>>>> >>>>>>> >>>>>>> >>>>>>> *// **Adamantios Corais* >>>>>>> >>>>>>> On Tue, Jul 3, 2018 at 2:24 AM, Jeff Zhang <zjf...@gmail.com> wrote: >>>>>>> >>>>>>>> >>>>>>>> Do you use the embeded spark or specify SPARK_HOME ? If you set >>>>>>>> SPARK_HOME, which spark version and hadoop version do you use ? >>>>>>>> >>>>>>>> >>>>>>>> >>>>>>>> Adamantios Corais <adamantios.cor...@gmail.com>于2018年7月3日周二 >>>>>>>> 上午12:32写道: >>>>>>>> >>>>>>>>> Hi, >>>>>>>>> >>>>>>>>> I have downloaded the latest binary package of Zeppelin (ver. >>>>>>>>> 0.8.0), extracted, and started as follows: `./bin/zeppelin.sh` >>>>>>>>> >>>>>>>>> Next, I tried a very simple example: >>>>>>>>> >>>>>>>>> `spark.read.parquet("./bin/userdata1.parquet").show()` >>>>>>>>> >>>>>>>>> Which unfortunately returns the following error. Note that the >>>>>>>>> same example works fine with the official docker version of Zeppelin >>>>>>>>> (ver. >>>>>>>>> 0.7.3). Any ideas? >>>>>>>>> >>>>>>>>> org.apache.spark.SparkException: Job aborted due to stage failure: >>>>>>>>>> Task 0 in stage 7.0 failed 1 times, most recent failure: Lost task >>>>>>>>>> 0.0 in >>>>>>>>>> stage 7.0 (TID 7, localhost, executor driver): >>>>>>>>>> java.lang.NoSuchMethodError: >>>>>>>>>> org.apache.hadoop.fs.FileSystem$Statistics.getThreadStatistics()Lorg/apache/hadoop/fs/FileSystem$Statistics$StatisticsData; >>>>>>>>>> at >>>>>>>>>> org.apache.spark.deploy.SparkHadoopUtil$$anonfun$1$$anonfun$apply$mcJ$sp$1.apply(SparkHadoopUtil.scala:149) >>>>>>>>>> at >>>>>>>>>> org.apache.spark.deploy.SparkHadoopUtil$$anonfun$1$$anonfun$apply$mcJ$sp$1.apply(SparkHadoopUtil.scala:149) >>>>>>>>>> at >>>>>>>>>> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) >>>>>>>>>> at >>>>>>>>>> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) >>>>>>>>>> at scala.collection.Iterator$class.foreach(Iterator.scala:893) >>>>>>>>>> at scala.collection.AbstractIterator.foreach(Iterator.scala:1336) >>>>>>>>>> at >>>>>>>>>> scala.collection.IterableLike$class.foreach(IterableLike.scala:72) >>>>>>>>>> at scala.collection.AbstractIterable.foreach(Iterable.scala:54) >>>>>>>>>> at >>>>>>>>>> scala.collection.TraversableLike$class.map(TraversableLike.scala:234) >>>>>>>>>> at scala.collection.AbstractTraversable.map(Traversable.scala:104) >>>>>>>>>> at >>>>>>>>>> org.apache.spark.deploy.SparkHadoopUtil$$anonfun$1.apply$mcJ$sp(SparkHadoopUtil.scala:149) >>>>>>>>>> at >>>>>>>>>> org.apache.spark.deploy.SparkHadoopUtil.getFSBytesReadOnThreadCallback(SparkHadoopUtil.scala:150) >>>>>>>>>> at >>>>>>>>>> org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.<init>(FileScanRDD.scala:78) >>>>>>>>>> at >>>>>>>>>> org.apache.spark.sql.execution.datasources.FileScanRDD.compute(FileScanRDD.scala:71) >>>>>>>>>> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323) >>>>>>>>>> at org.apache.spark.rdd.RDD.iterator(RDD.scala:287) >>>>>>>>>> at >>>>>>>>>> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) >>>>>>>>>> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323) >>>>>>>>>> at org.apache.spark.rdd.RDD.iterator(RDD.scala:287) >>>>>>>>>> at >>>>>>>>>> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) >>>>>>>>>> at org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323) >>>>>>>>>> at org.apache.spark.rdd.RDD.iterator(RDD.scala:287) >>>>>>>>>> at >>>>>>>>>> org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87) >>>>>>>>>> at org.apache.spark.scheduler.Task.run(Task.scala:108) >>>>>>>>>> at >>>>>>>>>> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:335) >>>>>>>>>> at >>>>>>>>>> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1149) >>>>>>>>>> at >>>>>>>>>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:624) >>>>>>>>>> at java.lang.Thread.run(Thread.java:748) >>>>>>>>>> Driver stacktrace: >>>>>>>>>> at org.apache.spark.scheduler.DAGScheduler.org >>>>>>>>>> $apache$spark$scheduler$DAGScheduler$$failJobAndIndependentStages(DAGScheduler.scala:1499) >>>>>>>>>> at >>>>>>>>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1487) >>>>>>>>>> at >>>>>>>>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$abortStage$1.apply(DAGScheduler.scala:1486) >>>>>>>>>> at >>>>>>>>>> scala.collection.mutable.ResizableArray$class.foreach(ResizableArray.scala:59) >>>>>>>>>> at >>>>>>>>>> scala.collection.mutable.ArrayBuffer.foreach(ArrayBuffer.scala:48) >>>>>>>>>> at >>>>>>>>>> org.apache.spark.scheduler.DAGScheduler.abortStage(DAGScheduler.scala:1486) >>>>>>>>>> at >>>>>>>>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:814) >>>>>>>>>> at >>>>>>>>>> org.apache.spark.scheduler.DAGScheduler$$anonfun$handleTaskSetFailed$1.apply(DAGScheduler.scala:814) >>>>>>>>>> at scala.Option.foreach(Option.scala:257) >>>>>>>>>> at >>>>>>>>>> org.apache.spark.scheduler.DAGScheduler.handleTaskSetFailed(DAGScheduler.scala:814) >>>>>>>>>> at >>>>>>>>>> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.doOnReceive(DAGScheduler.scala:1714) >>>>>>>>>> at >>>>>>>>>> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1669) >>>>>>>>>> at >>>>>>>>>> org.apache.spark.scheduler.DAGSchedulerEventProcessLoop.onReceive(DAGScheduler.scala:1658) >>>>>>>>>> at >>>>>>>>>> org.apache.spark.util.EventLoop$$anon$1.run(EventLoop.scala:48) >>>>>>>>>> at >>>>>>>>>> org.apache.spark.scheduler.DAGScheduler.runJob(DAGScheduler.scala:630) >>>>>>>>>> at org.apache.spark.SparkContext.runJob(SparkContext.scala:2022) >>>>>>>>>> at org.apache.spark.SparkContext.runJob(SparkContext.scala:2043) >>>>>>>>>> at org.apache.spark.SparkContext.runJob(SparkContext.scala:2062) >>>>>>>>>> at >>>>>>>>>> org.apache.spark.sql.execution.SparkPlan.executeTake(SparkPlan.scala:336) >>>>>>>>>> at >>>>>>>>>> org.apache.spark.sql.execution.CollectLimitExec.executeCollect(limit.scala:38) >>>>>>>>>> at org.apache.spark.sql.Dataset.org >>>>>>>>>> $apache$spark$sql$Dataset$$collectFromPlan(Dataset.scala:2853) >>>>>>>>>> at >>>>>>>>>> org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2153) >>>>>>>>>> at >>>>>>>>>> org.apache.spark.sql.Dataset$$anonfun$head$1.apply(Dataset.scala:2153) >>>>>>>>>> at >>>>>>>>>> org.apache.spark.sql.Dataset$$anonfun$55.apply(Dataset.scala:2837) >>>>>>>>>> at >>>>>>>>>> org.apache.spark.sql.execution.SQLExecution$.withNewExecutionId(SQLExecution.scala:65) >>>>>>>>>> at org.apache.spark.sql.Dataset.withAction(Dataset.scala:2836) >>>>>>>>>> at org.apache.spark.sql.Dataset.head(Dataset.scala:2153) >>>>>>>>>> at org.apache.spark.sql.Dataset.take(Dataset.scala:2366) >>>>>>>>>> at org.apache.spark.sql.Dataset.showString(Dataset.scala:245) >>>>>>>>>> at org.apache.spark.sql.Dataset.show(Dataset.scala:644) >>>>>>>>>> at org.apache.spark.sql.Dataset.show(Dataset.scala:603) >>>>>>>>>> at org.apache.spark.sql.Dataset.show(Dataset.scala:612) >>>>>>>>>> ... 52 elided >>>>>>>>>> Caused by: java.lang.NoSuchMethodError: >>>>>>>>>> org.apache.hadoop.fs.FileSystem$Statistics.getThreadStatistics()Lorg/apache/hadoop/fs/FileSystem$Statistics$StatisticsData; >>>>>>>>>> at >>>>>>>>>> org.apache.spark.deploy.SparkHadoopUtil$$anonfun$1$$anonfun$apply$mcJ$sp$1.apply(SparkHadoopUtil.scala:149) >>>>>>>>>> at >>>>>>>>>> org.apache.spark.deploy.SparkHadoopUtil$$anonfun$1$$anonfun$apply$mcJ$sp$1.apply(SparkHadoopUtil.scala:149) >>>>>>>>>> at >>>>>>>>>> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) >>>>>>>>>> at >>>>>>>>>> scala.collection.TraversableLike$$anonfun$map$1.apply(TraversableLike.scala:234) >>>>>>>>>> at scala.collection.Iterator$class.foreach(Iterator.scala:893) >>>>>>>>>> at >>>>>>>>>> scala.collection.AbstractIterator.foreach(Iterator.scala:1336) >>>>>>>>>> at >>>>>>>>>> scala.collection.IterableLike$class.foreach(IterableLike.scala:72) >>>>>>>>>> at scala.collection.AbstractIterable.foreach(Iterable.scala:54) >>>>>>>>>> at >>>>>>>>>> scala.collection.TraversableLike$class.map(TraversableLike.scala:234) >>>>>>>>>> at >>>>>>>>>> scala.collection.AbstractTraversable.map(Traversable.scala:104) >>>>>>>>>> at >>>>>>>>>> org.apache.spark.deploy.SparkHadoopUtil$$anonfun$1.apply$mcJ$sp(SparkHadoopUtil.scala:149) >>>>>>>>>> at >>>>>>>>>> org.apache.spark.deploy.SparkHadoopUtil.getFSBytesReadOnThreadCallback(SparkHadoopUtil.scala:150) >>>>>>>>>> at >>>>>>>>>> org.apache.spark.sql.execution.datasources.FileScanRDD$$anon$1.<init>(FileScanRDD.scala:78) >>>>>>>>>> at >>>>>>>>>> org.apache.spark.sql.execution.datasources.FileScanRDD.compute(FileScanRDD.scala:71) >>>>>>>>>> at >>>>>>>>>> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323) >>>>>>>>>> at org.apache.spark.rdd.RDD.iterator(RDD.scala:287) >>>>>>>>>> at >>>>>>>>>> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) >>>>>>>>>> at >>>>>>>>>> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323) >>>>>>>>>> at org.apache.spark.rdd.RDD.iterator(RDD.scala:287) >>>>>>>>>> at >>>>>>>>>> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:38) >>>>>>>>>> at >>>>>>>>>> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:323) >>>>>>>>>> at org.apache.spark.rdd.RDD.iterator(RDD.scala:287) >>>>>>>>>> at >>>>>>>>>> org.apache.spark.scheduler.ResultTask.runTask(ResultTask.scala:87) >>>>>>>>>> at org.apache.spark.scheduler.Task.run(Task.scala:108) >>>>>>>>>> at >>>>>>>>>> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:335) >>>>>>>>>> ... 3 more >>>>>>>>> >>>>>>>>> >>>>>>>>> >>>>>>> >