You data might have format issue (with less fields than you expect) Please try execute the following code to check whether all the lines with 14 fields: rowStructText.map(s => s.split(",").size).countByValue foreach println
On Thu, Aug 6, 2015 at 1:01 PM, Randy Gelhausen <rgelhau...@hortonworks.com> wrote: > You likely have a problem with your parsing logic. I can’t see the data to > know for sure, but since Spark is lazily evaluated, it doesn’t try to run your > map until you execute the SQL that applies it to the data. > > That’s why your first paragraph can run (it’s only defining metadata), but > paragraph 2 throws an error. > > From: "ÐΞ€ρ@Ҝ (๏̯͡๏)" > Reply-To: "users@zeppelin.incubator.apache.org" > Date: Thursday, August 6, 2015 at 12:37 AM > To: "users@zeppelin.incubator.apache.org" > Subject: Re: Unable to run count(*) > > %sql > select * from summary > > Throws same error > > On Wed, Aug 5, 2015 at 9:33 PM, ÐΞ€ρ@Ҝ (๏̯͡๏) <deepuj...@gmail.com> wrote: > >> Para-1 >> import java.text.SimpleDateFormat >> import java.util.Calendar >> import java.sql.Date >> >> def formatStringAsDate(dateStr: String) = new java.sql.Date(new >> SimpleDateFormat("yyyy-MM-dd").parse(dateStr).getTime()) >> >> >> //(2015-07-27,12459,,31242,6,Daily,-999,2099-01-01,2099-01-02,1,0,0.1,0,1,-1,isGeo,,,204,694.0,1.9236856708701322E-4,0.0,-4.48,0.0,0.0,0.0,) >> val rowStructText = >> sc.textFile("/user/zeppelin/aggregatedsummary/2015/08/03/regular/part-m-00003.gz") >> case class Summary(f1: Date, f2: Long, f3: Long, f4: Integer, f5 : >> String, f6: Integer, f7 : Date, f8: Date, f9: Integer, f10: Integer, f11: >> Float, f12: Integer, f13: Integer, f14: String) >> >> val summary = rowStructText.map(s => s.split(",")).map( >> { >> s => >> Summary(formatStringAsDate(s(0)), >> s(1).replaceAll("\"", "").toLong, >> s(3).replaceAll("\"", "").toLong, >> s(4).replaceAll("\"", "").toInt, >> s(5).replaceAll("\"", ""), >> s(6).replaceAll("\"", "").toInt, >> formatStringAsDate(s(7)), >> formatStringAsDate(s(8)), >> s(9).replaceAll("\"", "").toInt, >> s(10).replaceAll("\"", "").toInt, >> s(11).replaceAll("\"", "").toFloat, >> s(12).replaceAll("\"", "").toInt, >> s(13).replaceAll("\"", "").toInt, >> s(14).replaceAll("\"", "") >> ) >> } >> ).toDF() >> summary.registerTempTable("summary") >> >> >> >> Output: >> import java.text.SimpleDateFormat import java.util.Calendar import >> java.sql.Date formatStringAsDate: (dateStr: String)java.sql.Date >> rowStructText: org.apache.spark.rdd.RDD[String] = >> /user/zeppelin/aggregatedsummary/2015/08/03/regular/part-m-00003.gz >> MapPartitionsRDD[152] at textFile at <console>:100 defined class Summary >> summary: org.apache.spark.sql.DataFrame = [f1: date, f2: bigint, f3: >> bigint, f4: int, f5: string, f6: int, f7: date, f8: date, f9: int, f10: >> int, f11: float, f12: int, f13: int, f14: string] >> >> >> Para-2 (DOES NOT WORK) >> %sql select count(*) from summary >> >> Output >> org.apache.spark.SparkException: Job aborted due to stage failure: Task 0 >> in stage 29.0 failed 4 times, most recent failure: Lost task 0.3 in stage >> 29.0 (TID 1844, datanode-6-3486.phx01.dev.ebayc3.com): >> java.lang.ArrayIndexOutOfBoundsException: 1 at >> $line184.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$anonfun$2.apply(<console>:109) >> at >> $line184.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$anonfun$2.apply(<console>:107) >> at scala.collection.Iterator$$anon$11.next(Iterator.scala:328) at >> scala.collection.Iterator$$anon$1.next(Iterator.scala:853) at >> scala.collection.Iterator$$anon$1.head(Iterator.scala:840) at >> org.apache.spark.sql.execution.RDDConversions$$anonfun$productToRowRdd$1.apply(ExistingRDD.scala:42) >> at >> org.apache.spark.sql.execution.RDDConversions$$anonfun$productToRowRdd$1.apply(ExistingRDD.scala:37) >> at org.apache.spark.rdd.RDD$$anonfun$14.apply(RDD.scala:634) at >> org.apache.spark.rdd.RDD$$anonfun$14.apply(RDD.scala:634) at >> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35) at >> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:277) at >> org.apache.spark.rdd.RDD.iterator(RDD.scala:244) at >> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35) at >> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:277) at >> org.apache.spark.rdd.RDD.iterator(RDD.scala:244) at >> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35) at >> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:277) at >> org.apache.spark.rdd.RDD.iterator(RDD.scala:244) at >> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35) at >> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:277) at >> org.apache.spark.rdd.RDD.iterator(RDD.scala:244) at >> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:68) >> at >> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41) >> at org.apache.spark.scheduler.Task.run(Task.scala:64) at >> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:203) at >> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) >> at >> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) >> at java.lang.Thread.run(Thread.java:745) >> >> >> Suggestions ? >> >> -- >> Deepak >> >> > > > -- > Deepak > > -- Best Regards Jeff Zhang