summary: org.apache.spark.rdd.RDD[Summary] = MapPartitionsRDD[285] at map at <console>:169 (1,517252)
What does that mean ? On Wed, Aug 5, 2015 at 10:14 PM, Jeff Zhang <zjf...@gmail.com> wrote: > You data might have format issue (with less fields than you expect) > > Please try execute the following code to check whether all the lines with > 14 fields: > rowStructText.map(s => s.split(",").size).countByValue foreach > println > > On Thu, Aug 6, 2015 at 1:01 PM, Randy Gelhausen < > rgelhau...@hortonworks.com> wrote: > >> You likely have a problem with your parsing logic. I can’t see the data >> to know for sure, but since Spark is lazily evaluated, it doesn’t try to >> run your map until you execute the SQL that applies it to the data. >> >> That’s why your first paragraph can run (it’s only defining metadata), >> but paragraph 2 throws an error. >> >> From: "ÐΞ€ρ@Ҝ (๏̯͡๏)" >> Reply-To: "users@zeppelin.incubator.apache.org" >> Date: Thursday, August 6, 2015 at 12:37 AM >> To: "users@zeppelin.incubator.apache.org" >> Subject: Re: Unable to run count(*) >> >> %sql >> select * from summary >> >> Throws same error >> >> On Wed, Aug 5, 2015 at 9:33 PM, ÐΞ€ρ@Ҝ (๏̯͡๏) <deepuj...@gmail.com> >> wrote: >> >>> Para-1 >>> import java.text.SimpleDateFormat >>> import java.util.Calendar >>> import java.sql.Date >>> >>> def formatStringAsDate(dateStr: String) = new java.sql.Date(new >>> SimpleDateFormat("yyyy-MM-dd").parse(dateStr).getTime()) >>> >>> >>> //(2015-07-27,12459,,31242,6,Daily,-999,2099-01-01,2099-01-02,1,0,0.1,0,1,-1,isGeo,,,204,694.0,1.9236856708701322E-4,0.0,-4.48,0.0,0.0,0.0,) >>> val rowStructText = >>> sc.textFile("/user/zeppelin/aggregatedsummary/2015/08/03/regular/part-m-00003.gz") >>> case class Summary(f1: Date, f2: Long, f3: Long, f4: Integer, f5 : >>> String, f6: Integer, f7 : Date, f8: Date, f9: Integer, f10: Integer, f11: >>> Float, f12: Integer, f13: Integer, f14: String) >>> >>> val summary = rowStructText.map(s => s.split(",")).map( >>> { >>> s => >>> Summary(formatStringAsDate(s(0)), >>> s(1).replaceAll("\"", "").toLong, >>> s(3).replaceAll("\"", "").toLong, >>> s(4).replaceAll("\"", "").toInt, >>> s(5).replaceAll("\"", ""), >>> s(6).replaceAll("\"", "").toInt, >>> formatStringAsDate(s(7)), >>> formatStringAsDate(s(8)), >>> s(9).replaceAll("\"", "").toInt, >>> s(10).replaceAll("\"", "").toInt, >>> s(11).replaceAll("\"", "").toFloat, >>> s(12).replaceAll("\"", "").toInt, >>> s(13).replaceAll("\"", "").toInt, >>> s(14).replaceAll("\"", "") >>> ) >>> } >>> ).toDF() >>> summary.registerTempTable("summary") >>> >>> >>> >>> Output: >>> import java.text.SimpleDateFormat import java.util.Calendar import >>> java.sql.Date formatStringAsDate: (dateStr: String)java.sql.Date >>> rowStructText: org.apache.spark.rdd.RDD[String] = >>> /user/zeppelin/aggregatedsummary/2015/08/03/regular/part-m-00003.gz >>> MapPartitionsRDD[152] at textFile at <console>:100 defined class Summary >>> summary: org.apache.spark.sql.DataFrame = [f1: date, f2: bigint, f3: >>> bigint, f4: int, f5: string, f6: int, f7: date, f8: date, f9: int, f10: >>> int, f11: float, f12: int, f13: int, f14: string] >>> >>> >>> Para-2 (DOES NOT WORK) >>> %sql select count(*) from summary >>> >>> Output >>> org.apache.spark.SparkException: Job aborted due to stage failure: Task >>> 0 in stage 29.0 failed 4 times, most recent failure: Lost task 0.3 in stage >>> 29.0 (TID 1844, datanode-6-3486.phx01.dev.ebayc3.com): >>> java.lang.ArrayIndexOutOfBoundsException: 1 at >>> $line184.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$anonfun$2.apply(<console>:109) >>> at >>> $line184.$read$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$iwC$$anonfun$2.apply(<console>:107) >>> at scala.collection.Iterator$$anon$11.next(Iterator.scala:328) at >>> scala.collection.Iterator$$anon$1.next(Iterator.scala:853) at >>> scala.collection.Iterator$$anon$1.head(Iterator.scala:840) at >>> org.apache.spark.sql.execution.RDDConversions$$anonfun$productToRowRdd$1.apply(ExistingRDD.scala:42) >>> at >>> org.apache.spark.sql.execution.RDDConversions$$anonfun$productToRowRdd$1.apply(ExistingRDD.scala:37) >>> at org.apache.spark.rdd.RDD$$anonfun$14.apply(RDD.scala:634) at >>> org.apache.spark.rdd.RDD$$anonfun$14.apply(RDD.scala:634) at >>> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35) at >>> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:277) at >>> org.apache.spark.rdd.RDD.iterator(RDD.scala:244) at >>> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35) at >>> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:277) at >>> org.apache.spark.rdd.RDD.iterator(RDD.scala:244) at >>> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35) at >>> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:277) at >>> org.apache.spark.rdd.RDD.iterator(RDD.scala:244) at >>> org.apache.spark.rdd.MapPartitionsRDD.compute(MapPartitionsRDD.scala:35) at >>> org.apache.spark.rdd.RDD.computeOrReadCheckpoint(RDD.scala:277) at >>> org.apache.spark.rdd.RDD.iterator(RDD.scala:244) at >>> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:68) >>> at >>> org.apache.spark.scheduler.ShuffleMapTask.runTask(ShuffleMapTask.scala:41) >>> at org.apache.spark.scheduler.Task.run(Task.scala:64) at >>> org.apache.spark.executor.Executor$TaskRunner.run(Executor.scala:203) at >>> java.util.concurrent.ThreadPoolExecutor.runWorker(ThreadPoolExecutor.java:1142) >>> at >>> java.util.concurrent.ThreadPoolExecutor$Worker.run(ThreadPoolExecutor.java:617) >>> at java.lang.Thread.run(Thread.java:745) >>> >>> >>> Suggestions ? >>> >>> -- >>> Deepak >>> >>> >> >> >> -- >> Deepak >> >> > > > -- > Best Regards > > Jeff Zhang > -- Deepak