Bob,

Thanks for sharing. As you know, but other vortexers might not know, I
am following roughly the same path. See also fusioncatalyst.org, if
you like to join this crowd science approach. In addition to
oxidation/reduction/melting cycles I believe carbon may play a role as
it is active in oxidation and reduction reactions and reported to work
in other LENR experiments (Lesley Case). K2CO3 is also repeatedly
reported to be of influence in LENR reports.

Elements that are known catalyst in chemistry and hydrogenation
reactions are Pt, Pd, Rh, Ru and Ni. Note that catalyzation in
chemistry is poorly understood at the microscopic level, possibly
similar process play a role in catalyzation as in LENR. Interesting in
this regard is "hydrogen embrittlement", the effect that some
stainless steels, especially Ni rich ones, sometimes fail to contain
high pressure hydrogen. An unsolved mystery in 'normal' science.

Cheers,
Bastiaan.
www.FusionCatalyst.org


On 7/17/12, Jojo Jaro <jth...@hotmail.com> wrote:
> Thanks for sharing your process.  Interesting.
>
> What is your proposed mechanism for the actual fusion?  Do you have a
> hypothesis?
>
> I have done a similar process, but different, with no positive news to
> report.  The process I have tried involved the Mircrowave Sintering of
> Nickel and Copper nanopowders in open air to result in oxidation which was
> then heated in an H2 atmosphere to reduce the oxides.  But frankly, I have
> not been able to develop this process further as I had to postpone my
> experiments due to other considerations.  When I get back, I will dedicate
> more time and effort into Carbon nanostructures than this path.  It seems
> Carbon nanostructures are more promising NAEs.
>
> But, you might be on to something here.
>
>
> Jojo
>
>
>   ----- Original Message -----
>   From: Bob Higgins
>   To: vortex-l@eskimo.com
>   Sent: Wednesday, July 18, 2012 1:22 AM
>   Subject: [Vo]:Rossi catalyst-fuel speculation
>
>
>   Since Rossi’s public display of his reactor and subsequent discussions of
> his technology, I have been anxious to reproduce his results – primarily
> just to know that it is a real phenomenon.  I listen to the excellent
> exchanges on Vortex and have learned much from the posts here.  As I
> continue down the path of trying to understand what Rossi, and potentially
> DGT have done, several people have asked me what I believe to be the
> catalyst-fuel that is used in Rossi’s and DGT reactors.  To further
> stimulate open thought and development of a Rossi/DGT reproduction, I would
> like to share my thoughts on the catalyst fuel with Vortex and ask for your
> constructive feedback.  Further, if you should try this and find excess
> heat, in the same spirit, please share your results with the rest of us.
>
>
>
>   Some of this is re-hash of what has been previously posted on Vortex and
> some is my speculation of what Rossi has done.  Just to be clear – I am
> speculating about Mr. Rossi’s invention and I salute his ingenuity and
> engineering.
>
>
>
>   Clearly the bulk of the material is a NICKEL powder.  I hear some
> speculations that the catalyst-fuel may be nickel nanopower – I believe this
> is clearly not Rossi’s catalyst-fuel.  Rossi has said that the nickel powder
> has micro-dimensions, not nano-dimensions.  Rossi says that Raney nickel
> (high surface area sponge nickel) will not work.  I observe that the most
> likely powder for this application is a nickel powder produced by the
> reduction of nickel carbonyl (a common process for producing high activity
> nickel powder).  This produces flower-like buds of roughly spherical
> diameter in the 3-10 micron range with “petals” in the 100 nanometer
> thickness range.  This nickel powder has very high EXTERNAL surface area (as
> opposed to Raney nickel which has much of its area inside its sponge-like
> interior).  Why the external surface area is important will become clear in
> a moment.  Examples of this type of carbonyl nickel powder are Hunter
> Chemical’s AH50
> (http://www.hunterchem.com/nickel-powder-carbonyl-process-hydrogen-reduced.html
> ) or Vale T255
> (http://www.vale.com/en-us/o-que-fazemos/mineracao/niquel/produtos/Documents/Nickel%20powders/T255-nickel-powder.pdf
> ).  I believe this type of nickel powder is the starting point.
>
>
>
>   Rossi also talks of catalyst additives to the nickel powder.  These are
> widely believed to be a nanopowder additive, but what nanopowder?  Rossi
> states that the catalyst he used is inexpensive.  One of the things found by
> examination of available nanopowders is that metal oxide nanopowders are far
> less expensive than pure elemental nanopowders.  They are also far easier
> and safer to handle and to mix.  Another clue is that partially oxidized
> (partly reduced) metal oxide nanopowders are good catalysts and will break
> the H2 molecules into monatomic hydrogen.  However, the mean free path of an
> H1 atom, before recombining to form an H2, is very short.  This means that
> the catalyst should be in direct contact with the nickel.  I believe that
> the catalyst is a simple metal oxide nanopowder that is finely dispersed
> across the “petals” of the nickel micro-powder “buds” and subsequently
> thermo-chemically treated.
>
>
>
>   I will go out on a limb and say that I believe the starting point for
> selecting a metal oxide nanopowder is to begin with Fe2O3 (for example Alfa
> Aesar 44895 http://www.alfa.com/en/GP100W.pgm?DSSTK=044895&rnd=516031653 ).
> It is inexpensive, and a known catalyst when properly prepared (satisfies
> the Rossi criteria of being inexpensive).  Further, in the Kullander report
> on a Rossi ash, 11% iron (a lot of iron) is reported from elemental surface
> analysis.  Rossi explains the copper, but provides no explanation for the
> large amount of iron, perhaps because he knew it was an ingredient and did
> not want to call attention to that point.
>
>
>
>   The nickel micro-powder is very heavy while the metal oxide nanopowder is
> very light and fluffy.  I mixed an equal volume of nickel micro-powder and
> nanopowder, placing the nickel first and then the nanopowder on top in equal
> volume in the tumbling container.  After 24 hours of tumbling, only the
> original volume of nickel powder remained – the nanopowder had found its way
> onto the nickel micro-powder surface and did not expand the volume.  My
> experiments showed that simple tumbling of DRY nickel micro-powder and metal
> oxide nanopowder works very well at distributing the nanopowder across the
> nickel micro-powder surface area (as confirmed by SEM imagery - I have
> photos).  This capability to finely disperse the metal oxide nanopowder
> across the surface area of the nickel micro-powder is the reason that
> EXTERNAL surface area is needed in the nickel powder, and is probably why
> Raney nickel would not work well for Rossi – the nanopowder would not
> disperse well across the bulk of the Raney (sponge) nickel interior surface
> area.
>
>
>
>   But, do not believe that the powder is ready to use at this point!  The
> catalyst is not active.  Rossi has stated that he must “grow tubercules” on
> the surface.  This is a very telling comment.  To “grow tubercules” implies
> thermal and or chemical processing.  The actual “tubercule” geometry may not
> be important – it could simply be that the process that produces tubercules
> also produces the desired NAEs which may not be the tubercules.   Here is
> what I believe the processing entails.  The admixed nickel micro-powder with
> the finely distributed metal oxide nanopowder is first reduced from the
> oxide into a substantially low oxide form by heating the powder in a
> crucible to 600-800C in a flowing H2 cover gas.  As the nanoparticles are
> reduced, they will take on filamentary forms with very tiny nano-features
> and will likely melt and alloy at nano-spots on the nickel micro-powder
> surface (metal nanoparticles melt at about half the temperature of the bulk
> metal).  Then I believe this is followed by a thermal oxidation reaction in
> air or O2 that partly oxides the nano-sites.  It may take several cycles of
> this reduction/oxidation to produce the Rossi NAEs.
>
>
>
>   Note that one of the processes used to make nanopowders is successive
> reduction and oxidation.  Ever watch an iron object rust?  The oxide makes
> it grow in volume.  Then take away that oxygen by H2 reduction and you are
> left with a tiny skeleton of iron.  This is also true for silicon.  When
> polysilicon is deposited and thermal oxide grown (by oxidizing the poly) it
> grows much thicker and must subsequently be polished flat again.  So,
> Rossi’s process to “grow” the “tubercules” is likely a reduction/oxidation
> cycle.
>
>
>
>   Could the NAEs be nano-cracks (latest NAE speculation from Dr. Ed Storms)
> that are formed at the site of the alloying of the metal nanopowder on the
> “petals” of the nickel micro-powder?  Perhaps.  Oxidation of the alloyed
> nano-metal on the nickel surface could wedge apart the nickel lattice at
> that site.  A nano-resolution SEM of this has not been done.
>
>
>
>   At this point the catalyst-fuel should be ready to use.  This is still
> speculation on my part.  I have not completed construction of the equipment
> needed to safely thermo-chemically process the powder mixture in this way
> (but I am working on it).
>
>
>
>   Have others tried a process like this and found it to work/not work?
>
>
>   Bob

Reply via email to