[ECCO] Re: Wisdom of Crowds

2004-12-06 Thread Francis Heylighen
Title: Re: Wisdom of Crowds


Gottfried:

I just started listening to  The Wisdom of
Crowds by James Surowiecki (2004). He describes some old
observations by Galton[...]: There was a contest to estimate the
weight of an ox and he found that the average of all the guesses was
very close to the correct value. Apparently this has been confirmed
by many experiments of estimating the number of jellybeans in a
jar.


[...]So I was wondering if this is just some simple
statistical property of random guesses or what the current status of
research is on these issues (the book seems to be more anecdotal than
scientific).



At 20:49 +0700 12/5/04, Korakot Chaovavanich wrote:
Suppose that everyone is likely to guess
it correctly (no inherent bias to this
specific problem) and solution is only one dimension (in this
case,
just a number).
According to central limit theorem, the eventual average will have
the same
mean (u) with deviation reduced by square root of n times.

So, if everybody is likely to guess with the deviation 2 (+-), 16
people averaged
will reduce the deviation to 2/root(16) = 0.5
(approximately).

But the assumption may not hold. For example, if there is systemic
bias from a large
porportion of the crowd, the average will be affected, and they
may
not appear so wise.




Averaging the guesses of many different people will come closer
and closer to the optimal solution if we assume that individual
guesses deviate from the correct one by a random number. In that
case, as Korakot pointed out, the statistical law of large
numbers will lead the deviations to cancel each other out the
larger the number of guesses that are averaged. This wisdom of
the crowds or collective intelligence phenomenon
has many useful applications.

For example, Craig Kaplan, in the paper he presented at our
Global Brain Workshop (http://pespmc1.vub.ac.be/Conf/GB-0-abs.html#Kaplan), used it to successfully forecast stock prices.
Norman Johnson from the Los Alamos National Laboratory made a nice
simulation demonstrating how the average decision of many agents
trying to find their way through a maze is better than that of any
individual agent. (the simulation and my interpretation are described
below in a quote from my paper on Collective Intelligence and
its Implementation on the Web
(http://pespmc1.vub.ac.be/papers/CollectiveWebIntelligence.pdf)


However, this assumes that there is no collective bias,
i.e. a common factor that makes people systematically overestimate or
underestimate the true value. Of course, we know of plenty such
cognitive and social biases (e.g. people tend to overestimate the
size of an object surrounded by smaller objects, and to underestimate
it when surrounded by bigger objects). But since these biases are
common to all of us, the wisdom of the crowds won't do
worse than the guess of an individual.

More dangerous are the situations were the bias is of an
inherently social nature, i.e. engendered by the interactions between
individuals. For example, social psychologists have shown that groups
often take more extreme decisions than individuals, because the
individual opinions reinforce each other (conformity), and people
feel more confident making a doubtful decision when supported by
others. That problem can be avoided by making people vote
independently on the preferred outcome, a feature of many group
decision support systems.

An important research issue in collective intelligence would be
to systematically list all these different individual and social
biases, so that we could take them into account, or try to avoid
them, when making collective decisions.

In the examples about the weight of an ox or the number of
candies in a jar, there probably aren't any specific individual
biases (e.g. we can assume that the ox is not surrounded by unusually
small members of the same species), while the independent guessing
eliminates social biases, so that is why it works. But it would be
interesting to do the experiment with many different types of
questions and settings to see under what circumstances biases
appear.

Since our cognitive apparatus has been finetuned by evolution to
be as accurate as possible, conditional to our limited capacity for
perception and information processing, shared individual biases are
probably the exception rather than the rule. While that is the case,
individuals still have idiosyncratic biases, that depend wholly on
their personal experience (e.g. having encountered mostly heavy,
respectively light oxen until now). But since everyone's
experience is different, these biases can be assumed to be random,
and therefore they will be reduced and eventually eliminated through
the averaging of an increasing number of guesses.

That would seem to imply that we just need a sufficiently large
number of people voting independently to come to good solutions. But
that assumes that these people have a sufficient diversity of
relevant experiences. Democracy shows that this is not at all
obvious. 

RE: [ECCO] Seminars and GOA evaluation

2004-12-06 Thread Julien Libbrecht
Title: Seminars and GOA evaluation



Dag 
Francis,

Ik zal 
er op 16 en 23/12 bij zijn.

Groeten.

Julien.



  -Oorspronkelijk bericht-Van: 
  [EMAIL PROTECTED] 
  [mailto:[EMAIL PROTECTED]Namens Francis 
  HeylighenVerzonden: vrijdag 3 december 2004 19:56Aan: 
  Evolution, Complexity and Cognition groupCC: Frank Van 
  OverwalleOnderwerp: [ECCO] Seminars and GOA 
  evaluation
  
  ECCO Seminar series
  
  For our seminars, I have reserved a room in the psychology faculty 
  (3C204) on Thursdays, starting from 5 pm, for the rest of the year. This is a 
  large room with an inbuilt projector for computer presentations. Since we will 
  normally be with a relatively small group, we may move the tables and chairs 
  to create a more close setting.
  
  I chose the room in the PE faculty, because the LW faculty, to which I am 
  administratively connected, does not have any rooms available for seminars, 
  and normal lecture rooms have to be paid for if they are not used for 
  teaching. But if anybody knows a pleasant room somewhere else that we could 
  use, I can still change the reservation...
  
  Since all those who reacted noted that Thursday was OK, while no other 
  days were unproblematic for everybody, it seems that Thursday will be our 
  weekly activity day. Moreover, since some ECCO members are normally working 
  off-campus until 5 pm, I suggest to start the seminars a little later, at 
  5.30, until about 7.30.
  
  The preliminary program for the next few weeks is the following (this 
  will be confirmed in the coming days):
  
  Dec. 9: Francis Heylighen: The origins of organization. A general 
  introduction to the ECCO theme
  
  Dec. 16: Carlos Gershenson: Self-organizing traffic lights: a simple 
  simulation of the mediated emergence of cooperation
  
  Dec. 23: Marko Rodriguez: Towards a computer-support system 
  for societal decision-making
  
  
  Evaluation of our GOA project
  
  Most of you will know that Frank Van Overwalle and I proposed an 
  ambitious "GOA" project on the emergence and evolution of distributed 
  cognition, which unfortunately was not funded. Today we got the referee 
  reports, which are generally quite positive.
  
  Two referees thought we definitely deserved funding (one enthusiastically 
  so), the third one was a little doubtful. A strong point of the proposal was 
  the quality of the research team, which was basically a combination of the 
  embryonic ECCO as it existed in April, and Frank's Social Cognition group. All 
  referees agreed on the excellent scientific reputation and high activity level 
  of the main promotors, and the broad complementarity of backgrounds and 
  experience of the other members. The only criticism for the ECCO group was 
  that we needed more publications in high-impact journals, which is indeed a 
  weak point. The referees also mostly agreed on the importance, originality and 
  cohesion of the project, but two were more doubtful about the practical 
  feasibility, noting that while we were likely to produce very interesting 
  results, the overall aim of creating an integrated theory of distributed 
  cognition seemed overambitious given the 5 year time-frame of the project. The 
  referees further made some more detailed suggestions for improvement of the 
  proposal.
  
  In conclusion, it definitely seems worth resubmitting an improved version 
  of this proposal next time a call is opened.
  
  
  
  
  
  -- Francis Heylighen Evolution, 
  Complexity and Cognition groupFree University of 
  Brusselshttp://pespmc1.vub.ac.be/HEYL.html