stephenrawls commented on a change in pull request #14208: Add support for fast 
variable-length LSTM
URL: https://github.com/apache/incubator-mxnet/pull/14208#discussion_r280620654
 
 

 ##########
 File path: tests/python/gpu/test_gluon_gpu.py
 ##########
 @@ -225,6 +226,54 @@ def forward(self, inpt):
     assert_allclose(net(data).asnumpy(), ref_net(data).asnumpy())
 
 
+def check_layer_bidirectional_varseqlen(size, in_size):
+    class RefBiLSTMVarSeqLen(gluon.Block):
+        def __init__(self, size, **kwargs):
+            super(RefBiLSTMVarSeqLen, self).__init__(**kwargs)
+            with self.name_scope():
+                self._lstm_fwd = gluon.rnn.LSTM(size, bidirectional=False, 
prefix='l0')
+                self._lstm_bwd = gluon.rnn.LSTM(size, bidirectional=False, 
prefix='r0')
+
+        def forward(self, inpt, sequence_length):
+            fwd = self._lstm_fwd(inpt)
+            bwd_inpt = nd.SequenceReverse(inpt, 
sequence_length=sequence_length, use_sequence_length=True)
+            bwd = self._lstm_bwd(bwd_inpt)
+            bwd = nd.SequenceReverse(bwd, sequence_length=sequence_length, 
use_sequence_length=True)
+            return nd.concat(fwd, bwd, dim=2)
+    weights = {}
+    for d in ['l', 'r']:
+        weights['lstm_{}0_i2h_weight'.format(d)] = 
mx.random.uniform(shape=(size*4, in_size))
+        weights['lstm_{}0_h2h_weight'.format(d)] = 
mx.random.uniform(shape=(size*4, size))
+        weights['lstm_{}0_i2h_bias'.format(d)] = 
mx.random.uniform(shape=(size*4,))
+        weights['lstm_{}0_h2h_bias'.format(d)] = 
mx.random.uniform(shape=(size*4,))
+
+    net = gluon.rnn.LSTM(size, bidirectional=True, use_sequence_length=True, 
prefix='lstm_')
+    ref_net = RefBiLSTMVarSeqLen(size, prefix='lstm_')
+    net.initialize()
+    ref_net.initialize()
+    net_params = net.collect_params()
+    ref_net_params = ref_net.collect_params()
+    for k in weights:
+        net_params[k].set_data(weights[k])
+        ref_net_params[k.replace('l0', 'l0l0').replace('r0', 
'r0l0')].set_data(weights[k])
+
+
+    batch_size = 10
+    num_timesteps = 11
+    data = mx.random.uniform(shape=(num_timesteps, batch_size, in_size))
+
+    # TODO: figure out why int32 doesn't work here
 
 Review comment:
   the kernel does work with an arbitrary IType. I don't recall now why the 
unit test failed to work, I think it was something about some other unit test 
utility function expecting a float type, not the rnn kernel.

----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
 
For queries about this service, please contact Infrastructure at:
[email protected]


With regards,
Apache Git Services

Reply via email to