stephenrawls commented on a change in pull request #14208: Add support for fast
variable-length LSTM
URL: https://github.com/apache/incubator-mxnet/pull/14208#discussion_r281426918
##########
File path: tests/python/gpu/test_gluon_gpu.py
##########
@@ -225,6 +226,54 @@ def forward(self, inpt):
assert_allclose(net(data).asnumpy(), ref_net(data).asnumpy())
+def check_layer_bidirectional_varseqlen(size, in_size):
+ class RefBiLSTMVarSeqLen(gluon.Block):
+ def __init__(self, size, **kwargs):
+ super(RefBiLSTMVarSeqLen, self).__init__(**kwargs)
+ with self.name_scope():
+ self._lstm_fwd = gluon.rnn.LSTM(size, bidirectional=False,
prefix='l0')
+ self._lstm_bwd = gluon.rnn.LSTM(size, bidirectional=False,
prefix='r0')
+
+ def forward(self, inpt, sequence_length):
+ fwd = self._lstm_fwd(inpt)
+ bwd_inpt = nd.SequenceReverse(inpt,
sequence_length=sequence_length, use_sequence_length=True)
+ bwd = self._lstm_bwd(bwd_inpt)
+ bwd = nd.SequenceReverse(bwd, sequence_length=sequence_length,
use_sequence_length=True)
+ return nd.concat(fwd, bwd, dim=2)
+ weights = {}
+ for d in ['l', 'r']:
+ weights['lstm_{}0_i2h_weight'.format(d)] =
mx.random.uniform(shape=(size*4, in_size))
+ weights['lstm_{}0_h2h_weight'.format(d)] =
mx.random.uniform(shape=(size*4, size))
+ weights['lstm_{}0_i2h_bias'.format(d)] =
mx.random.uniform(shape=(size*4,))
+ weights['lstm_{}0_h2h_bias'.format(d)] =
mx.random.uniform(shape=(size*4,))
+
+ net = gluon.rnn.LSTM(size, bidirectional=True, use_sequence_length=True,
prefix='lstm_')
+ ref_net = RefBiLSTMVarSeqLen(size, prefix='lstm_')
+ net.initialize()
+ ref_net.initialize()
+ net_params = net.collect_params()
+ ref_net_params = ref_net.collect_params()
+ for k in weights:
+ net_params[k].set_data(weights[k])
+ ref_net_params[k.replace('l0', 'l0l0').replace('r0',
'r0l0')].set_data(weights[k])
+
+
+ batch_size = 10
+ num_timesteps = 11
+ data = mx.random.uniform(shape=(num_timesteps, batch_size, in_size))
+
+ # TODO: figure out why int32 doesn't work here
+ sequence_length = nd.random.randint(1, num_timesteps+1,
shape=(batch_size)).astype("float")
+
+ net_output = net(data, sequence_length=sequence_length).asnumpy()
+ ref_net_output = ref_net(data, sequence_length).asnumpy()
+ sequence_length_np = sequence_length.asnumpy().astype("int32")
+
+ # Only compare the valid sections for each batch entry
+ for b in range(batch_size):
+ assert_allclose(net_output[:sequence_length_np[b], b],
ref_net_output[:sequence_length_np[b], b])
Review comment:
The reference net is not using the sequence length feature of cudnn, because
use_sequence_length defaults to false.
The reference net is actually manually implementing the variable sequence
length support by using two LSTMs for forward/backward direction and manually
handling reversing them and concatenating the forward/backward directions. That
is, it is doing it a slower way than via cudnn, but in a way we know should
produce correct results.
----------------------------------------------------------------
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
For queries about this service, please contact Infrastructure at:
[email protected]
With regards,
Apache Git Services