[ 
https://issues.apache.org/jira/browse/MAHOUT-1856?page=com.atlassian.jira.plugin.system.issuetabpanels:comment-tabpanel&focusedCommentId=15833722#comment-15833722
 ] 

ASF GitHub Bot commented on MAHOUT-1856:
----------------------------------------

Github user andrewpalumbo commented on a diff in the pull request:

    https://github.com/apache/mahout/pull/246#discussion_r97235704
  
    --- Diff: 
math-scala/src/main/scala/org/apache/mahout/math/algorithms/regression/OrdinaryLeastSquares.scala
 ---
    @@ -0,0 +1,96 @@
    +/**
    +  * Licensed to the Apache Software Foundation (ASF) under one
    +  * or more contributor license agreements. See the NOTICE file
    +  * distributed with this work for additional information
    +  * regarding copyright ownership. The ASF licenses this file
    +  * to you under the Apache License, Version 2.0 (the
    +  * "License"); you may not use this file except in compliance
    +  * with the License. You may obtain a copy of the License at
    +  *
    +  * http://www.apache.org/licenses/LICENSE-2.0
    +  *
    +  * Unless required by applicable law or agreed to in writing,
    +  * software distributed under the License is distributed on an
    +  * "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
    +  * KIND, either express or implied. See the License for the
    +  * specific language governing permissions and limitations
    +  * under the License.
    +  */
    +
    +package org.apache.mahout.math.algorithms.regression
    +
    +import org.apache.mahout.math.{Vector => MahoutVector}
    +import org.apache.mahout.math.drm.RLikeDrmOps._
    +import org.apache.mahout.math.drm.DrmLike
    +import org.apache.mahout.math.scalabindings._
    +import org.apache.mahout.math.scalabindings.RLikeOps._
    +
    +import scala.reflect.ClassTag
    +
    +/**
    +  * import 
org.apache.mahout.math.algorithms.regression.OrdinaryLeastSquares
    +  * val model = new OrdinaryLeastSquares()
    +  *
    +  * model.calcStandardErrors = true
    +  * 
    +  */
    +class OrdinaryLeastSquares[K](hyperparameters: Map[String, Any] = Map("" 
-> None)) extends LinearRegressor[K] {
    +  // https://en.wikipedia.org/wiki/Ordinary_least_squares
    +
    +  var calcStandardErrors: Boolean = 
hyperparameters.asInstanceOf[Map[String, 
Boolean]].getOrElse("calcStandardErrors", true)
    +  var addIntercept: Boolean = hyperparameters.asInstanceOf[Map[String, 
Boolean]].getOrElse("addIntercept", true)
    +
    +  var summary = ""
    +  def fit(drmFeatures: DrmLike[K], drmTarget: DrmLike[K]): Unit = {
    --- End diff --
    
    Continuing on from our discussion on Slack I would think that Fit may be a 
more appropriate place for Hyperparameters eg:
    ```
    fit(observed_independent: Drm[K], observerd_targets: Drm[K],  
hyperparamters: Option[List[double]]): List[double]
    ```
    I think that this may be a matter of Convention, so If you're following a 
convention that I am not familiar with, this may be fine.  However I feel that 
this may be more robust.


> Create a framework for new Mahout Clustering, Classification, and 
> Optimization  Algorithms
> ------------------------------------------------------------------------------------------
>
>                 Key: MAHOUT-1856
>                 URL: https://issues.apache.org/jira/browse/MAHOUT-1856
>             Project: Mahout
>          Issue Type: New Feature
>    Affects Versions: 0.12.1
>            Reporter: Andrew Palumbo
>            Assignee: Trevor Grant
>            Priority: Critical
>             Fix For: 0.13.0
>
>
> To ensure that Mahout does not become "A loose bag of algorithms", Create 
> basic traits with funtions common to each class of algorithm. 



--
This message was sent by Atlassian JIRA
(v6.3.4#6332)

Reply via email to