I don't know much about computer graphics but I take it that a sane design for a matrix/vector library geared towards graphics is completely different from one geared towards general numerics/scientific computing? I'm trying to understand whether SciD (which uses BLAS/LAPACK and expression templates) overlaps with this at all.

On 12/2/2011 5:36 PM, David wrote:
Hello,

I am currently working on gl3n - https://bitbucket.org/dav1d/gl3n - gl3n
provides all the math you need to work with OpenGL, DirectX or just
vectors and matrices (it's mainly targeted at graphics - gl3n will never
be more then a pure math library). What it supports:

  * vectors
  * matrices
  * quaternions
  * interpolation (lerp, slerp, hermite, catmull rom, nearest)
  * nearly all glsl functions (according to spec 4.1)
  * some more cool features, like templated types (vectors, matrices,
    quats), cool ctors, dynamic swizzling

And the best is, it's MIT licensed ;). Unfortunatly there's no
documentation yet, but it shouldn't be hard to understand how to use it,
if you run anytime into troubles just take a look into the source, I did
add to every part of the lib unittests, so you can see how it works when
looking at the unittests, furthermore I am very often at #D on freenode.
But gl3n isn't finished! My current plans are to add more interpolation
functions and the rest of the glsl defined functions, but I am new to
graphics programming (about 4 months I am now into OpenGL), so tell me
what you're missing, the chances are good that I'll implement and add
it. So let me know what you think about it.

Before I forget it, a bit of code to show you how to use gl3n:

------------------------------------------------------------------------
vec4 v4 = vec4(1.0f, vec3(2.0f, 3.0f, 4.0f));
vec4 v4 = vec4(1.0f, vec4(1.0f, 2.0f, 3.0f, 4.0f).xyz)); // "dynamic"
swizzling with opDispatch
vec3 v3 = my_3dvec.rgb;
float[] foo = v4.xyzzzwzyyxw // not useful but possible!
glUniformMatrix4fv(location, 1, GL_TRUE, mat4.translation(-0.5f, -0.54f,
0.42f).rotatex(PI).rotatez(PI/2).value_ptr); // yes they are row major!
mat3 inv_view = view.rotation;
mat3 inv_view = mat3(view);
mat4 m4 = mat4(vec4(1.0f, 2.0f, 3.0f, 4.0f), 5.0f, 6.0f, 7.0f, 8.0f,
vec4(…) …);

struct Camera {
     vec3 position = vec3(0.0f, 0.0f, 0.0f);
     quat orientation = quat.identity;

     Camera rotatex(real alpha) { orientation.rotatex(alpha); return this; }
     Camera rotatey(real alpha) { orientation.rotatey(alpha); return this; }
     Camera rotatez(real alpha) { orientation.rotatez(alpha); return this; }

     Camera move(float x, float y, float z) {
         position += vec3(x, y, z);
         return this;
     }
     Camera move(vec3 s) {
         position += s;
         return this;
     }

     @property camera() {
         //writefln("yaw: %s, pitch: %s, roll: %s",
degrees(orientation.yaw), degrees(orientation.pitch),
degrees(orientation.roll));
         return mat4.translation(position.x, position.y, position.z) *
orientation.to_matrix!(4,4);
     }
}

         glUniformMatrix4fv(programs.main.view, 1, GL_TRUE,
cam.camera.value_ptr);
         glUniformMatrix3fv(programs.main.inv_rot, 1, GL_TRUE,
cam.orientation.to_matrix!(3,3).inverse.value_ptr);
------------------------------------------------------------------------

I hope this gave you a little introduction of gl3n.

- dav1d

Reply via email to