And this time it has this additional line:   
run-hook-with-args-until-success(org-babel-execute-safely-maybe)

------------------

  sit-for(0.25)
  org-babel-comint-eval-invisibly-and-wait-for-file("type2" 
"/var/folders/hj/hqfjch716qg5php160jbtfgh0000gn/T/babel-53134TSq/R-53134vJF" 
"{\n    function(object,transfer.file) {\n        object\n        invisible(\n  
          if (\n                inherits(\n                    try(\n           
             {\n                            tfile<-tempfile()\n                 
           write.table(object, file=tfile, sep=\"\\t\",\n                       
                 na=\"nil\",row.names=FALSE,col.names=TRUE,\n                   
                     quote=FALSE)\n                            
file.rename(tfile,transfer.file)\n                        },\n                  
      silent=TRUE),\n                    \"try-error\"))\n                {\n   
                 if(!file.exists(transfer.file))\n                        
file.create(transfer.file)\n                }\n            )\n    
}\n}(object=.Last.value,transfer.file=\"/var/folders/hj/hqfjch716qg5php160jbtfgh0000gn/T/babel-53134TSq/R-53134vJF\")")
  org-babel-R-evaluate-session("type2" 
"library(plyr)\nlibrary(Hmisc)\ng->tempg\n\n                                    
    # 
CV_untreated\nas.integer(tempg$state_region/10)->tempg$State.code.68\nfactor(tempg$State.code.68)->tempg$State.code.68\ndata.frame(State=0,adjusted_cv=0)->e\n\nfor
 (i in c(1:35)) {\n    subset(tempg,as.numeric(tempg$State.code.68)==i)->dd\n   
 
wtd.var(dd$adj_cal,weight=dd$weight)^0.5/wtd.mean(dd$adj_cal,weight=dd$weight)->cvs\n
    data.frame(State=i,adjusted_cv=cvs)->e1\n    
rbind(e,e1)->e\n}\n\nddply(tempg,.(State.code.68),summarise,value=wtd.mean(adj_cal,weight))->s1\n\ndata.frame(State=99,adjusted_cv=0)->f2\nwtd.var(tempg$adj_cal,weight=tempg$weight)^0.5/wtd.mean(tempg$adj_cal,weight=tempg$weight)->f2[1,2]\nrbind(e,f2)->cv1\n\n
                                        # CV_grouped 
data\nddply(tempg,.(sex,agegroup,fractile_adj),summarise,calories=wtd.mean(adj_cal,weight))->l1\nddply(tempg,.(sex,agegroup,fractile_adj),summarise,weight=sum(weight))->w\n\nmerge(w,l1,by=c(\"sex\",\"agegroup\",\"fractile_adj\"))->l1\n\nddply(tempg,.(fractile_adj_state,State.code.68,agegroup,sex),summarise,value=wtd.mean(adj_cal,weight))->s3\n\nddply(tempg,.(fractile_adj_state,State.code.68,agegroup,sex),summarise,sum_weight=sum(weight))->sw\n\nmerge(s3,sw,by=c(\"fractile_adj_state\",\"State.code.68\",\"agegroup\",\"sex\"))->s3\n\nfactor(s3$State.code.68)->s3$State.code.68\n\ndata.frame(State=99,grouped_cv=wtd.var(l1$calories,weight=l1$weight)^0.5/wtd.mean(l1$calories,weight=l1$weight))->cv3\n\nfor
 (i in c(1:35)) {\n    subset(s3,as.numeric(s3$State.code.68)==i)->s3sub\n    
data.frame(State=i,grouped_cv=wtd.var(s3sub$value,s3sub$sum_weight)^0.5/wtd.mean(s3sub$value,s3sub$sum_weight))->t1\n
    rbind(cv3,t1)->cv3\n}\n\n# CV_from regression 
model\nregdata->p\nexp(predict.lm(reg))->p$predicted_cal\n\ndata.frame(State=99,predicted_cv=wtd.var(p$predicted_cal,weight=p$weight)^0.5/wtd.mean(p$predicted_cal,weight=p$weight),adjr2=summary(reg)$adj.r.squared)->cv2\n\n\n#data.frame(State=0,predicted_cv=0,adjr2=0)->e\n\nfor
 (i in c(1:35)) {\n    subset(regdata,as.numeric(p$State.code.68)==i)->dd\n    
factor(dd$state_region)->dd$state_region\nfmla <- as.formula(\n         
ifelse(length(levels(dd$state_region))==1,\"log_cal~sector+sex+AgeChild+AgeAdult+foodprice+log(MPCE)\",\"log_cal~sector+sex+AgeChild+AgeAdult+foodprice+log(MPCE)+state_region\"))\n\n\n
    lm(fmla,data=dd,weights=weight)->regstate\n    
exp(predict.lm(regstate))->dd$predicted_cal\n    
wtd.var(dd$predicted_cal,weight=dd$weight)^0.5/wtd.mean(dd$predicted_cal,weight=dd$weight)->cvs\n
    
data.frame(State=i,predicted_cv=cvs,adjr2=summary(regstate)$adj.r.squared)->e1\n
    
rbind(cv2,e1)->cv2\n}\n\nsubset(cv2,select=-adjr2)->cv2\n\nmerge(cv1,cv3,by=\"State\")->t\nmerge(t,cv2,by=\"State\")->t\nmerge(t,statecode,by.x=\"State\",by.y=\"State.code.68\",all.x=TRUE)->t\nt$State.68[t$State==99]<-\"India\"\nround(t$grouped_cv,4)->t$grouped_cv\nround(t$adjusted_cv,4)->t$adjusted_cv\nround(t$predicted_cv,4)->t$predicted_cv\nnames(t)<-c(\"State.code.68\",\"CV
 (unit-level data)\",\"CV (grouped data)\",\"CV (based on regression 
model)\",\"State\")\nt->finvar\nt[order(t$State),c(5,2,3,4)]" value ("replace" 
"value") t nil)
  org-babel-R-evaluate("type2" "library(plyr)\nlibrary(Hmisc)\ng->tempg\n\n     
                                   # 
CV_untreated\nas.integer(tempg$state_region/10)->tempg$State.code.68\nfactor(tempg$State.code.68)->tempg$State.code.68\ndata.frame(State=0,adjusted_cv=0)->e\n\nfor
 (i in c(1:35)) {\n    subset(tempg,as.numeric(tempg$State.code.68)==i)->dd\n   
 
wtd.var(dd$adj_cal,weight=dd$weight)^0.5/wtd.mean(dd$adj_cal,weight=dd$weight)->cvs\n
    data.frame(State=i,adjusted_cv=cvs)->e1\n    
rbind(e,e1)->e\n}\n\nddply(tempg,.(State.code.68),summarise,value=wtd.mean(adj_cal,weight))->s1\n\ndata.frame(State=99,adjusted_cv=0)->f2\nwtd.var(tempg$adj_cal,weight=tempg$weight)^0.5/wtd.mean(tempg$adj_cal,weight=tempg$weight)->f2[1,2]\nrbind(e,f2)->cv1\n\n
                                        # CV_grouped 
data\nddply(tempg,.(sex,agegroup,fractile_adj),summarise,calories=wtd.mean(adj_cal,weight))->l1\nddply(tempg,.(sex,agegroup,fractile_adj),summarise,weight=sum(weight))->w\n\nmerge(w,l1,by=c(\"sex\",\"agegroup\",\"fractile_adj\"))->l1\n\nddply(tempg,.(fractile_adj_state,State.code.68,agegroup,sex),summarise,value=wtd.mean(adj_cal,weight))->s3\n\nddply(tempg,.(fractile_adj_state,State.code.68,agegroup,sex),summarise,sum_weight=sum(weight))->sw\n\nmerge(s3,sw,by=c(\"fractile_adj_state\",\"State.code.68\",\"agegroup\",\"sex\"))->s3\n\nfactor(s3$State.code.68)->s3$State.code.68\n\ndata.frame(State=99,grouped_cv=wtd.var(l1$calories,weight=l1$weight)^0.5/wtd.mean(l1$calories,weight=l1$weight))->cv3\n\nfor
 (i in c(1:35)) {\n    subset(s3,as.numeric(s3$State.code.68)==i)->s3sub\n    
data.frame(State=i,grouped_cv=wtd.var(s3sub$value,s3sub$sum_weight)^0.5/wtd.mean(s3sub$value,s3sub$sum_weight))->t1\n
    rbind(cv3,t1)->cv3\n}\n\n# CV_from regression 
model\nregdata->p\nexp(predict.lm(reg))->p$predicted_cal\n\ndata.frame(State=99,predicted_cv=wtd.var(p$predicted_cal,weight=p$weight)^0.5/wtd.mean(p$predicted_cal,weight=p$weight),adjr2=summary(reg)$adj.r.squared)->cv2\n\n\n#data.frame(State=0,predicted_cv=0,adjr2=0)->e\n\nfor
 (i in c(1:35)) {\n    subset(regdata,as.numeric(p$State.code.68)==i)->dd\n    
factor(dd$state_region)->dd$state_region\nfmla <- as.formula(\n         
ifelse(length(levels(dd$state_region))==1,\"log_cal~sector+sex+AgeChild+AgeAdult+foodprice+log(MPCE)\",\"log_cal~sector+sex+AgeChild+AgeAdult+foodprice+log(MPCE)+state_region\"))\n\n\n
    lm(fmla,data=dd,weights=weight)->regstate\n    
exp(predict.lm(regstate))->dd$predicted_cal\n    
wtd.var(dd$predicted_cal,weight=dd$weight)^0.5/wtd.mean(dd$predicted_cal,weight=dd$weight)->cvs\n
    
data.frame(State=i,predicted_cv=cvs,adjr2=summary(regstate)$adj.r.squared)->e1\n
    
rbind(cv2,e1)->cv2\n}\n\nsubset(cv2,select=-adjr2)->cv2\n\nmerge(cv1,cv3,by=\"State\")->t\nmerge(t,cv2,by=\"State\")->t\nmerge(t,statecode,by.x=\"State\",by.y=\"State.code.68\",all.x=TRUE)->t\nt$State.68[t$State==99]<-\"India\"\nround(t$grouped_cv,4)->t$grouped_cv\nround(t$adjusted_cv,4)->t$adjusted_cv\nround(t$predicted_cv,4)->t$predicted_cv\nnames(t)<-c(\"State.code.68\",\"CV
 (unit-level data)\",\"CV (grouped data)\",\"CV (based on regression 
model)\",\"State\")\nt->finvar\nt[order(t$State),c(5,2,3,4)]" value ("replace" 
"value") t nil)
  org-babel-execute:R("library(plyr)\nlibrary(Hmisc)\ng->tempg\n\n              
                          # 
CV_untreated\nas.integer(tempg$state_region/10)->tempg$State.code.68\nfactor(tempg$State.code.68)->tempg$State.code.68\ndata.frame(State=0,adjusted_cv=0)->e\n\nfor
 (i in c(1:35)) {\n    subset(tempg,as.numeric(tempg$State.code.68)==i)->dd\n   
 
wtd.var(dd$adj_cal,weight=dd$weight)^0.5/wtd.mean(dd$adj_cal,weight=dd$weight)->cvs\n
    data.frame(State=i,adjusted_cv=cvs)->e1\n    
rbind(e,e1)->e\n}\n\nddply(tempg,.(State.code.68),summarise,value=wtd.mean(adj_cal,weight))->s1\n\ndata.frame(State=99,adjusted_cv=0)->f2\nwtd.var(tempg$adj_cal,weight=tempg$weight)^0.5/wtd.mean(tempg$adj_cal,weight=tempg$weight)->f2[1,2]\nrbind(e,f2)->cv1\n\n
                                        # CV_grouped 
data\nddply(tempg,.(sex,agegroup,fractile_adj),summarise,calories=wtd.mean(adj_cal,weight))->l1\nddply(tempg,.(sex,agegroup,fractile_adj),summarise,weight=sum(weight))->w\n\nmerge(w,l1,by=c(\"sex\",\"agegroup\",\"fractile_adj\"))->l1\n\nddply(tempg,.(fractile_adj_state,State.code.68,agegroup,sex),summarise,value=wtd.mean(adj_cal,weight))->s3\n\nddply(tempg,.(fractile_adj_state,State.code.68,agegroup,sex),summarise,sum_weight=sum(weight))->sw\n\nmerge(s3,sw,by=c(\"fractile_adj_state\",\"State.code.68\",\"agegroup\",\"sex\"))->s3\n\nfactor(s3$State.code.68)->s3$State.code.68\n\ndata.frame(State=99,grouped_cv=wtd.var(l1$calories,weight=l1$weight)^0.5/wtd.mean(l1$calories,weight=l1$weight))->cv3\n\nfor
 (i in c(1:35)) {\n    subset(s3,as.numeric(s3$State.code.68)==i)->s3sub\n    
data.frame(State=i,grouped_cv=wtd.var(s3sub$value,s3sub$sum_weight)^0.5/wtd.mean(s3sub$value,s3sub$sum_weight))->t1\n
    rbind(cv3,t1)->cv3\n}\n\n# CV_from regression 
model\nregdata->p\nexp(predict.lm(reg))->p$predicted_cal\n\ndata.frame(State=99,predicted_cv=wtd.var(p$predicted_cal,weight=p$weight)^0.5/wtd.mean(p$predicted_cal,weight=p$weight),adjr2=summary(reg)$adj.r.squared)->cv2\n\n\n#data.frame(State=0,predicted_cv=0,adjr2=0)->e\n\nfor
 (i in c(1:35)) {\n    subset(regdata,as.numeric(p$State.code.68)==i)->dd\n    
factor(dd$state_region)->dd$state_region\nfmla <- as.formula(\n         
ifelse(length(levels(dd$state_region))==1,\"log_cal~sector+sex+AgeChild+AgeAdult+foodprice+log(MPCE)\",\"log_cal~sector+sex+AgeChild+AgeAdult+foodprice+log(MPCE)+state_region\"))\n\n\n
    lm(fmla,data=dd,weights=weight)->regstate\n    
exp(predict.lm(regstate))->dd$predicted_cal\n    
wtd.var(dd$predicted_cal,weight=dd$weight)^0.5/wtd.mean(dd$predicted_cal,weight=dd$weight)->cvs\n
    
data.frame(State=i,predicted_cv=cvs,adjr2=summary(regstate)$adj.r.squared)->e1\n
    
rbind(cv2,e1)->cv2\n}\n\nsubset(cv2,select=-adjr2)->cv2\n\nmerge(cv1,cv3,by=\"State\")->t\nmerge(t,cv2,by=\"State\")->t\nmerge(t,statecode,by.x=\"State\",by.y=\"State.code.68\",all.x=TRUE)->t\nt$State.68[t$State==99]<-\"India\"\nround(t$grouped_cv,4)->t$grouped_cv\nround(t$adjusted_cv,4)->t$adjusted_cv\nround(t$predicted_cv,4)->t$predicted_cv\nnames(t)<-c(\"State.code.68\",\"CV
 (unit-level data)\",\"CV (grouped data)\",\"CV (based on regression 
model)\",\"State\")\nt->finvar\nt[order(t$State),c(5,2,3,4)]" ((:colname-names) 
(:rowname-names) (:result-params "replace" "value") (:result-type . value) 
(:comments . "") (:shebang . "") (:cache . "no") (:padline . "") (:noweb . 
"no") (:tangle . "no") (:exports . "results") (:results . "replace value") 
(:hlines . "no") (:session . "type2") (:colnames . "yes") (:hline . "yes")))
  org-babel-execute-src-block(nil)
  org-babel-execute-src-block-maybe()
  org-babel-execute-maybe()
  org-babel-execute-safely-maybe()
  run-hook-with-args-until-success(org-babel-execute-safely-maybe)
  org-ctrl-c-ctrl-c(nil)
  call-interactively(org-ctrl-c-ctrl-c nil nil)
  command-execute(org-ctrl-c-ctrl-c)

> On 28-May-2016, at 10:31 pm, Charles C. Berry <ccbe...@ucsd.edu> wrote:
> 
> 
> p.s. one more thing - below
> 
> On Sat, 28 May 2016, Charles C. Berry wrote:
> 
>> On Sat, 28 May 2016, William Denton wrote:
>> 
>>> On 28 May 2016, Vikas Rawal wrote:
>>>> Thanks John. Appreciate that you cared to respond to such a vague query. I 
>>>> am at a loss with this one. It does not happen all the time. I think it 
>>>> happens when I am processing large datasets, and CPUs and RAM of my system 
>>>> are struggling to keep up. But I could be wrong.
>>> I've had the same kind of thing happen---but C-g (sometimes many) to kill 
>>> the command, then rerunning, usually works without any trouble. Some 
>>> strange combination of CPU and RAM and all that, the kind of thing that's 
>>> not easily reproducible.
>> 
>> Try this: customize `debug-on-quit' to `t' (and set for current session).
>> 
>> Then when you have to quit via C-g, you will get a backtrace showing where 
>> the process was hanging and how it got there. This might be helpful in 
>> figuring out what is going on.
>> 
>> Run your code and when you finally have to C-g out copy the *Backtrace* 
>> buffer and report it back here (or on the ESS list if appropriate).
>> 
> 
> After you copy the buffer, you should type 'q' in the *Backtrace* buffer to 
> finish up or you may have some odd messages and hangups afterwards.
> 
> Chuck

Reply via email to