Le 23-août-06, à 03:58, Brent Meeker a écrit :

>> People who believes that inputs (being either absolute-material or
>> relative-platonical) are needed for consciousness should not believe
>> that we can be conscious in a dream, given the evidence that the brain
>> is almost completely cut out from the environment during rem sleep.
> Almost is not completely.

I am glad you don't insist.

>  In any case, I don't think consciousness is maintained
> indefinitely with no inputs.  I think a "brain-in-a-vat" would go into 
> an endless
> loop without external stimulus.

OK, but for our reasoning it is enough consciousness is maintained a 
nanosecond (relatively to us).

>> I
>> guess they have no problem with comatose people either.
> Comatose people are generally referred to as "unconscious".

? ? ?
I mean this *is* the question. In mind'sI (Dennett Hofstadter) we learn 
that a woman has been in comatose state during 50 years (if I remember 
correctly), and said she never stop to be conscious.
They are more than one form of comatose state. To say they are 
"unconscious" is debatable at the least. And then there is the case of 
dreams. And for those who does not like dream, what about the following 
question: take a child and enclose him/her in a box completely isolated 
from the environement. Would that fact suppress his/her consciousness?
Some parents will appreciate and feel less guilty with such ideas ...

>> Of course they cannot be even just troubled by the UD, which is a
>> program without inputs and without outputs.
> As I understood the UD the program itself was not conscious, but 
> rather that some
> parts are supposed to be, relative to a simulated environment.

Yes. some "person" attached to (infinity) of special computations, 

>> Now, without digging in the movie-graph, I would still be interested 
>> if
>> someone accepting "standard comp" (Peter's expression) could explain
>> how a digital machine could correctly decide that her environment is
>> "real-physical".
> "Decide" is ambiguous.  She could very well form that hypothesis and 
> find much
> confirming and no contrary evidence.  What are you asking for?  a 
> proof from some
> axioms?  Which axioms?

Sorry, I have used the word "decide" in the logician sense (like in 
undecidable). To decide = to proof, or to test, or to solve, in some 
math sense.
Which axioms? Indeed, good question, that's makes my point. Well, I was 
thinking about some physical theory the "someone" would argue for. 
Anyone a priori.

>> If such machine and reasoning exist, it will be done
>> in Platonia, and, worst, assuming comp, it will be done as correctly 
>> as
>> the real machine argument. This would lead to the fact that in
>> Platonia, there are (many) immaterial machines proving *correctly* 
>> that
>> they are immaterial. Contradiction.
> Suppose a physical machine implements computation and proves relative 
> to some axioms
> that physical machines don't exist.  Contradiction?

If by "physical" you mean what Peter Jones means, then indeed the 
"physical machine" is in contradiction. This means that her axioms are 
indeed contradictory. If moreover, the physical machine gives a 
"correct" proof, as as I say in the quotes, then we get a total 
contradiction, like a proof that PI is an integer, for example. That we 
are in contradiction.
As far as we are consistent, this just means that no X-machine can 
correctly proof that X-machine does not exist.



You received this message because you are subscribed to the Google Groups 
"Everything List" group.
To post to this group, send email to everything-list@googlegroups.com
To unsubscribe from this group, send email to [EMAIL PROTECTED]
For more options, visit this group at 

Reply via email to