Hi,

`I will answer Johnathan's question asap, but I have three busy days`

`and I want to take some time to do that. The answer is, imo, contained`

`in the conclusion of UDA, and made clearer (technically) with AUDA,`

`but I guess I shopuld explain this more clearly.`

Below I can answer to Stephen less demanding post.

## Advertising

On 20 Nov 2011, at 21:52, Stephen P. King wrote:

On 11/20/2011 2:56 PM, Johnathan Corgan wrote:Quoting Bruno Marchal: "UDA shows that physics is determined by a relative measure on computations. If this leads to predict that electron weight one tonthen mechanism is disproved. UDA shows that physics is entirelyreduceto computer science/number theory in a very specific and unique way (modulo a variation on the arithmetical definition of knowledge)." Bruno--could you please elaborate on this? It's a claim you've (credibly) made many times, and it would be useful to go the next step. I understand that the UDA argument and first-person indeterminacy demonstrates that there are an infinite number of paths through the execution of the UDA that may result in the present 1-pov experience. Since physics, when described from a 1-pov, is merely (!) theexplanation of the regularities in those 1-povs, it should bepossibleto mathematically translate from "computational steps of the UDA" to "laws of physics." One of the best-confirmed formulations of physics has been quantum mechanics. And indeed, as far as I can tell, QM does not contradict your theory--but how would QM "emerge" from your more fundamental notions of computationalism and mechanism? Is this the forefront of your theory, or has work been done to reduce the explanatory gap between, say, modal logics and the Schrodinger equation? Let me ask this in a very different way. Suppose you had at your disposal the a fixed but large amount of funding and researchers to pursue a reformulation of QM based on the work you've done so far. How would you organize the effort? What would you prioritize first? What sub-portions of your theory would be amenable to be parceled out as individual problems to go off and solve? No pressure :-) Johnathan CorganHi Bruno,I would like to add that the most important aspect of QM is thenon-distributivity of the logic involved.

`And this answer a part of Johnathan question. Accepting the classical`

`(S4, S4Grz, and the comp nuances: Z1*, S4Grz1, etc.) theory of`

`knowledge, we can derive the logic 1 of the measure on computation,`

`which, by UDA *is* physics. So if you give me a funding and`

`reserachers to proceed, I would ask for a confirmation and precise`

`proof that the measure one is non distributive, by using the`

`arithmetical quantization. Basically, do we have that`

(A & B) V C <-> (A & C) V (B & C) which, translate in arithmetic becomes: BD((BD A & BD B) V BD C) <-> BD(BD A & BD C) V BD(BD B & BD C)

`With Bp = beweisbar ('p') & ~beweisbar ~('p') with 'p' being the GĂ¶del`

`number of the arithmetical proposition p.`

`The question is really is "BD((BD A & BD B) V BD C) <-> BD(BD A & BD`

`C) V BD(BD B & BD C)" true in the standard model of arithmetic?, or`

`(thanks to Solovay) is the modal formula "BD((BD A & BD B) V BD C) <->`

`BD(BD A & BD C) V BD(BD B & BD C)" a theorem of G*.`

`Actually, this has been solved years ago, by using the implementation`

`of G*, and of all hypostases, and the theorem prover found a`

`counterexample, so we know that the measure one (the arithmetical`

`observable) are not distributive. (But this, like the neutrino speed`

`should be verified again).`

`We can do that for all quantum "tautologies", so a good work to do is`

`to pursue the comparison of the existing quantum logics and the`

`arithmetical quantum logics extracted form the comp hypothesis (and`

`Theatetus type of knowledge).`

`And then, once we have enough information on the quantum logic, we can`

`tackle the complex problem of deriving an arithmetical tensor product.`

`I did already found promising arithmetical Temperley Lieb algebra,`

`years ago, (I explained this on the list, but it is very technical).`

`The arithmetical Temperley-Lieb algebra might help to extract the`

`notion of space.`

`Physics is of course redefined (as UDA explains why). Would the`

`arithmetical quantum logic be collapsing into classical logic, physics`

`would have disappear, and our physical reality appearance would have`

`been a purely geographical reality. The difference between physics and`

`geography would have been conventional, and the physical reality would`

`have contained all possible consistent laws (or comp is not correct).`

`Likewise, if the gravitational constant is not a theorem of the first`

`order extension of the material hypostases, then it means there are`

`other physical realities with different gravitational constant.`

`But the evidence from comp (and AUDA) is that there is a real physics,`

`invariant for all universal numbers point of view, and already rather`

`quantum-like.`

This translates to the nonexistence of a unique partition ofobservables into a unique set of mutually commuting quantities over(or on) the set of all possible observables. What I would like toknow, other than the answer to Johnathan's question, is how do webridge the gap between computations, which by UDA seems arbitrarilycomposable and thus distributive, to the non-distributive propertyof QM. If QM emerges from computations, exactly how does this happen?

`Here I think that you are confusing the third person view on`

`computations, and the first person views, which means that you don't`

`really take the conclusion of the UDA into account. Physics does not`

`emerge from the computations, it emerges from the computations *as`

`seen from a universal numbers first person perspective*. By the first`

`person indeterminacy (the global one which involves a continuum of`

`histories) those are very different things.`

It can easily be shown that there will always be distributivesubsets on the set of observables as the set of Abelian(commutative) von Neumann algebras... But to see things this waypoints against the idea that we can derive QM from computations

`It means that you have not (yet) really understand the UDA point. It`

`does not leave any alternative: if comp is correct, then physics`

`(whatever it is, QM or not) is given by a relative measure on all`

`computational extensions, constrained by the laws of mind (with the`

`comp laws of mind being the logics of self-reference and their`

`intensional (modal) variants).`

and toward the idea that we can derive computations from QM. Inother words, while physics does nto seem to be derivable from numbertheory,

`How do you know that? On the contrary, UDA shows that IF QM is`

`(universally) correct, and if comp is correct, then QM is derivable`

`from comp. And AUDA explains why the task of doing the derivation is`

`not trivial (already G and G* are not trivial, and even counter-`

`intuitive).`

we need number theory to do physics. Why work so hard try to deriveall from computations when we obviously need both the numbers andthe "stuff" to do physics.

`Any stuff coming from the usual way to do physics is treachery, and`

`will prevent the distinction between qualia and quanta. We just cannot`

`use that stuff.`

`The goal is not to build a better physics, but a physics satisfying`

`the mind-body problem 'solution' given by the comp hypothesis.`

As I see it, a duality of sorts between matter and mind is inevitable.

Sure.

The hard part is getting people to see the error of the assumptionof substance (http://plato.stanford.edu/entries/substance/).What I see in your result is an argument against the notion of"fundamental substance" not against the material world per se.

`If comp leads to the idea that matter does not exist, then I would say`

`that comp is plausibly false. But the hypostases just show already`

`that matter exist and behave non trivially. The UDA is indeed an`

`argument against substance-time-space, as being fundamental or`

`primitive. It makes physics a branch of numbers' epistemology. It is a`

`point against primary substance and, above all, against physicalism,`

`not against the (non primary) existence of a physical and material`

`reality.`

Probably more explanations in my reply to Johnathan asap. Bruno http://iridia.ulb.ac.be/~marchal/ -- You received this message because you are subscribed to the Google Groups "Everything List" group. To post to this group, send email to everything-list@googlegroups.com. To unsubscribe from this group, send email to everything-list+unsubscr...@googlegroups.com. For more options, visit this group at http://groups.google.com/group/everything-list?hl=en.