On 17 Jan 2013, at 13:32, Telmo Menezes wrote:

## Advertising

Hi all, Naive question...Not being a physicists, I only have a pop-science level ofunderstanding of the MWI. I imagine the multi-verse as a tree, whereeach time there is more than one possible quantum state we get abranch. I imagine my consciousness moving down the tree.Suppose Mary performs the Schrodinger's cat experiment in her houseand Joe does the same in his house. They both keep the animals inthe boxes and don't take a peak. Don't tell PETA. They meet for acoffe in a nearby coffeeshop.So now we have four possible universes where Mary and Joe can meet.But from the double slit experiment we know that the cats are bothstill dead+alive in the current universe. Right? So are Mary and Joemeeting in the fours universes at the same time?

`Let a = alive, d = dead, and the subscript 1 and 2 distinguishes the`

`two cats, which are independent. Both cats are in a superposed state`

`dead + alive:`

(a1 + d1) and (a2 + d2),

`so the two cats configuration is given by (a1 + d1) * (a2 + d2), with`

`"*" the tensor product.`

This products is linear and so this give a1*a2 + a1*d2 + d1*a2 + d2*a2.

`Mary and Joe don't interact with any cats, so the global state is also`

`a direct tensor product M * J * (a1*a2 + a1*d2 + d1*a2 + d2*a2), which`

`gives:`

M * J *a1*a2 + M * J *a1*d2 + M * J *d1*a2 + M * J *d2*a2

`You can add the "normalization" constant, which are 1/sqrt(2) times 1/`

`sqrt(2) = 1/2=`

`1/2 M * J *a1*a2 + 1/2 M * J *a1*d2 + 1/2 M * J *d1*a2 + 1/2 M * J`

`*d2*a2`

So the answer to your question is yes.

`To be sure, the normalizing factor does not mean there are four`

`universes, but most plausibly an infinity of universes, only`

`partitioned in four parts with identical quantum relative measure. To`

`get the exact "number" of universes, we should first solve the`

`marriage of gravity with the quantum. And with comp, we should also`

`derive the Quantum from arithmetic (but that's not true, actually:`

`with comp we have directly the infinities of "universes").`

Best, Bruno http://iridia.ulb.ac.be/~marchal/ -- You received this message because you are subscribed to the Google Groups "Everything List" group. To post to this group, send email to everything-list@googlegroups.com. To unsubscribe from this group, send email to everything-list+unsubscr...@googlegroups.com. For more options, visit this group at http://groups.google.com/group/everything-list?hl=en.