Hi, I think you mean the semidirect product G = (C_2)^3 \rtimes C_7. If so, then the following code:
N := DirectProduct( CyclicGroup( 2 ), CyclicGroup( 2 ), CyclicGroup( 2 ) ); A := AutomorphismGroup( N ); a := Filtered( Elements( A ), x -> Order( x ) = 7 )[1]; C7 := CyclicGroup( 7 ); c := C7.1; hom := GroupHomomorphismByImages( C7, A, [c], [a] ); G := SemidirectProduct( C7, hom, N ); should construct the group. To check this is the right group StructureDescription( G ); IdSmallGroup( G ); should display "(C2 x C2 x C2) : C7" [ 56, 11 ] Sincerely, Sandeep. On 8 May 2012, at 03:45, Ashkan Ramiz wrote: > Dear forum, I would like to know how we can build the group G=2^3:7 in gap. > Best wishes, > Ashkan > _______________________________________________ > Forum mailing list > Forum@mail.gap-system.org > http://mail.gap-system.org/mailman/listinfo/forum _______________________________________________ Forum mailing list Forum@mail.gap-system.org http://mail.gap-system.org/mailman/listinfo/forum