Dear Farzaneh, You can restrict any group to its action on an orbit or set of orbits using the operation Action.
For instance: gap> g := AlternatingGroup(5); Alt( [ 1 .. 5 ] ) gap> a := AutomorphismGroup(g); <group of size 120 with 3 generators> gap> invs := (1,2)(3,4)^g; (1,2)(3,4)^G gap> Action(a,last); Group([ (1,7)(2,10)(3,13)(8,11)(9,14)(12,15), (1,13,4,14,5)(2,10,12,9,8) (3,7,15,6,11), (1,2,3)(4,6,5)(7,10,13)(8,12,14)(9,11,15) ]) gap> Size(last); 120 Steve On 20 Mar 2014, at 07:50, Farzaneh Gholaminezhad <farzane.gholaminez...@gmail.com> wrote: > Dear GAP forum > > I am Farzaneh, PhD student of Group theory and computational group theory > I have a question about GAP please: > would you tell me how can I restrict the Automorphism Group of a group G to > a subset of G like the involutions of G. > I need the order of restriction of Automorphisms of group G to the > involution set of G. > > I would be so thankful if you help me. > > Best Regards > Farzaneh Gholaminezhad > _______________________________________________ > Forum mailing list > Forum@mail.gap-system.org > http://mail.gap-system.org/mailman/listinfo/forum _______________________________________________ Forum mailing list Forum@mail.gap-system.org http://mail.gap-system.org/mailman/listinfo/forum