mT := MoebiusTransform(Fraction(Integer))
moebius(2, 1,1, 1)$mT
sum(sin(x), x=1..n)
product(sin(x), x=1..n)
D(besselJ(v, z), v)
D(besselJ(v, z), v, 3)
You can also test directly on output forms, below you have
a collection of examples that make little sense mathematically,
but show varous strange constructs (note: you need to execute
first the first three lines to initalize variables, the rest
should work in arbitrary order):
of1 := ('f)::OutputForm
of2 := ('z)::OutputForm
of3:=('+)::OutputForm
prefix(of1, [of2 for i in 1..5])
infix(of3,[of2 for i in 1..4])
infix(of3, of1, of2)
postfix(of3, of1)
box(prefix(of1, [of2 for i in 1..5]))
label(prefix(of1, [of2 for i in 1..5]), of2)
(matrix$OutputForm)([[of1, of2], [of2, of1]])
zag(zag(of1, of2),zag(of1, of2))
root(of1)
root(of1, of2)
over(of1, of2)
slash(of1, of2)
assign(of1, of2)
rarrow(of1, of2)
differentiate(of1, 15)
binomial(of1, of2)
tensor(of1,of2)
sub(of1, of2)
super(of1, of2)
presub(of1, of2)
presuper(of1, of2)
scripts(of1, [of2, of3, of2, of3])
scripts(of1, [of2, empty()$OutputForm, of3, empty()$OutputForm])
quote(of1)
dot(of1)
dot(of1,3)
dot(of1,4)
prime(of1)
prime(of1, 5)
overbar(of1)
overlabel(of2, of1)
sum(of1)
sum(of1, of2)
sum(of1,of2,of3)
prod(of1)
prod(of1, of2)
prod(of1,of2,of3)
int(of1)
int(of1, of2)
int(of1, of2, of3)
brace(of1)
brace([of1 for i in 1..4])
bracket(of1)
bracket([of1 for i in 1..4])
paren(of1)
paren([of1 for i in 1..4])
semicolonSeparate([of1 for i in 1..4])
of1< of2
exquo(of1, of2)
SEGMENT(of1,of2)
SEGMENT(of1)
--
Waldek Hebisch
[email protected]