Recall that this fertilization is using up macronutrients such as N and P
that may have been used elsewhere at a later date.

So, to some extent, iron fertilization concentrates productivity in space
and in time.

An important question is: how much of the P that was in the fertilized
water would have been mixed downward as phosphate and how much of it would
have been transported downward biologically at a later date somewhere else.

It is only the fract of P that would not have been used biologically
somewhere else at a later date that represents the increase in
biological export.

On top of this, there are additional questions of how the C/P ratio and
remineralization depth of this carbon that would have been naturally
exported differs from the C/P ratio and remineralization depth of the
carbon that was exported in the experiment.

So, two difficulties in analyzing these results are

(1) Determining effects that are distal in space and time associated with
the local (in space and time) consumption of macronutrients

(1) establishing the counterfactual baseline that could be subtracted from
the experimental case to determine the delta, taking into consideration
effects that are distal in space and time (see previous point)



On Wed, Jul 18, 2012 at 10:59 PM, Rau, Greg <r...@llnl.gov> wrote:

> So 1 tone of added Fe captures 2786 tones of C or 10,214 tones of CO2 (?)
> Then the issue is how much of this stays in the ocean for how long.  I'll
> have to read the fine print.
> -Greg
>
> From: Mick West <m...@mickwest.com>
> Reply-To: "m...@mickwest.com" <m...@mickwest.com>
> To: "andrew.lock...@gmail.com" <andrew.lock...@gmail.com>
> Cc: geoengineering <geoengineering@googlegroups.com>
> Subject: Re: [geo] Nature eifex report
>
> It says 13,000 atoms, not tonnes:
>
> "Each atom of added iron pulled at least 13,000 atoms of carbon out of
> the atmosphere by encouraging algal growth which, through photosynthesis,
> captures carbon."
>
> On Wed, Jul 18, 2012 at 12:54 PM, Andrew Lockley <andrew.lock...@gmail.com
> > wrote:
>
>> Personally I find the claims of 13000 tonnes to 1 atom of iron somewhat
>> difficult to comprehend!
>>
>> A
>>
>> -----
>>
>> Nature doi:10.1038/nature.2012.11028
>>
>> Dumping iron at sea does sink carbon
>>
>> Geoengineering hopes revived as study of iron-fertilized algal blooms
>> shows they deposit carbon in the deep ocean when they die.
>> Quirin Schiermeier
>> 18 July 2012
>>
>> In the search for methods to limit global warming, it seems that
>> stimulating the growth of algae in the oceans might be an efficient way of
>> removing excess carbon dioxide from the atmosphere after all.
>>
>> Despite other studies suggesting that this approach was ineffective, a
>> recent analysis of an ocean-fertilization experiment eight years ago in the
>> Southern Ocean indicates that encouraging algal blooms to grow can soak up
>> carbon that is then deposited in the deep ocean as the algae die.
>>
>> In February 2004, researchers involved in the European Iron Fertilization
>> Experiment (EIFEX) fertilized 167 square kilometres of the Southern Ocean
>> with several tonnes of iron sulphate. For 37 days, the team on board the
>> German research vessel Polarstern monitored the bloom and demise of
>> single-cell algae (phytoplankton) in the iron-limited but otherwise
>> nutrient-rich ocean region.
>>
>> Each atom of added iron pulled at least 13,000 atoms of carbon out of the
>> atmosphere by encouraging algal growth which, through photosynthesis,
>> captures carbon. In a paper in Nature today, the team reports that much of
>> the captured carbon was transported to the deep ocean, where it will remain
>> sequestered for centuries1 — a 'carbon sink'.
>>
>> “At least half of the bloom was exported to depths greater than 1,000
>> metres,” says Victor Smetacek, a marine biologist at the Alfred Wegener
>> Institute for Polar and Marine Research in Bremerhaven, Germany, who led
>> the study.
>>
>> The team used a turbidity meter — a device that measures the degree to
>> which water becomes less transparent owing to the presence of suspended
>> particles — to establish the amount of biomass, such as dead algae, that
>> rained down the water column towards the sea floor. Samples collected
>> outside the experimental area showed substantially less carbon being
>> deposited in the deep ocean.
>> Iron findings
>>
>> The EIFEX results back up a hypothesis by the late oceanographer John
>> Martin, who first reported in 1988 that iron deficiency limits
>> phytoplankton growth in parts of the subarctic Pacific Ocean2. Martin later
>> proposed that vast quantities of iron-rich dust from dry and sparsely
>> vegetated continental regions may have led to enhanced ocean productivity
>> in the past, thus contributing to the drawdown of atmospheric carbon
>> dioxide during glacial climates3 — an idea given more weight by the EIFEX
>> findings.
>>
>> Some advocates of geoengineering think that this cooling mechanism might
>> help to mitigate present-day climate change. However, the idea of
>> deliberately stimulating plankton growth on a large scale is highly
>> controversial. After noting that there were gaps in the scientific
>> knowledge about this approach, the parties to the London Convention — the
>> international treaty governing ocean dumping — agreed in 2007 that
>> ‘commercial’ ocean fertilization is not justified (see 'Convention
>> discourages ocean fertilization').
>>
>> The finding that ocean fertilization does work, although promising, is
>> not enough to soothe concerns over potentially harmful side effects on
>> ocean chemistry and marine ecosystems, says Smetacek. Some scientists fear
>> that massive ocean fertilization might produce toxic algal blooms or
>> deplete oxygen levels in the middle of the water column. Given the
>> controversy over another similar experiment (see 'Ocean fertilization
>> experiment draws fire'), which critics said should not have been approved
>> in the first place, the Alfred Wegener Institute will not conduct any
>> further artificial ocean-fertilization studies, according to Smetacek.
>>
>> “We just don’t know what might happen to species composition and so forth
>> if you were to continuously add iron to the sea,” says Smetacek. “These
>> issues can only be addressed by more experiments including longer-term
>> studies of natural blooms that occur around some Antarctic islands.”
>>
>> But some experts argue that artificial ocean-fertilization studies should
>> not be abandoned altogether. “We are nowhere near the point of recommending
>> ocean fertilization as a geoengineering tool,” says Ken Buesseler, a
>> geochemist at the Woods Hole Oceanographic Institution in Massachusetts.
>> “But just because we don't know all the answers, we shouldn't say no to
>> further research.”
>>
>> --
>> You received this message because you are subscribed to the Google Groups
>> "geoengineering" group.
>> To post to this group, send email to geoengineering@googlegroups.com.
>> To unsubscribe from this group, send email to
>> geoengineering+unsubscr...@googlegroups.com.
>> For more options, visit this group at
>> http://groups.google.com/group/geoengineering?hl=en.
>>
>
> --
> You received this message because you are subscribed to the Google Groups
> "geoengineering" group.
> To post to this group, send email to geoengineering@googlegroups.com.
> To unsubscribe from this group, send email to
> geoengineering+unsubscr...@googlegroups.com.
> For more options, visit this group at
> http://groups.google.com/group/geoengineering?hl=en.
>
> --
> You received this message because you are subscribed to the Google Groups
> "geoengineering" group.
> To post to this group, send email to geoengineering@googlegroups.com.
> To unsubscribe from this group, send email to
> geoengineering+unsubscr...@googlegroups.com.
> For more options, visit this group at
> http://groups.google.com/group/geoengineering?hl=en.
>

-- 
You received this message because you are subscribed to the Google Groups 
"geoengineering" group.
To post to this group, send email to geoengineering@googlegroups.com.
To unsubscribe from this group, send email to 
geoengineering+unsubscr...@googlegroups.com.
For more options, visit this group at 
http://groups.google.com/group/geoengineering?hl=en.

Reply via email to