kazuyukitanimura commented on code in PR #461:
URL: https://github.com/apache/datafusion-comet/pull/461#discussion_r1613863992
##########
core/src/execution/datafusion/expressions/cast.rs:
##########
@@ -622,14 +590,89 @@ impl Cast {
self.eval_mode,
from_type,
to_type,
- )?
+ )
+ }
+ _ if Self::is_datafusion_spark_compatible(from_type, to_type) => {
+ // use DataFusion cast only when we know that it is compatible
with Spark
+ Ok(cast_with_options(&array, to_type, &CAST_OPTIONS)?)
}
_ => {
- // when we have no Spark-specific casting we delegate to
DataFusion
- cast_with_options(&array, to_type, &CAST_OPTIONS)?
+ // we should never reach this code because the Scala code
should be checking
+ // for supported cast operations and falling back to Spark for
anything that
+ // is not yet supported
+ Err(CometError::Internal(format!(
+ "Native cast invoked for unsupported cast from
{from_type:?} to {to_type:?}"
+ )))
}
};
- Ok(spark_cast(cast_result, from_type, to_type))
+ Ok(spark_cast(cast_result?, from_type, to_type))
+ }
+
+ /// Determines if DataFusion supports the given cast in a way that is
+ /// compatible with Spark
+ fn is_datafusion_spark_compatible(from_type: &DataType, to_type:
&DataType) -> bool {
+ if from_type == to_type {
+ return true;
+ }
+ match from_type {
+ DataType::Boolean => matches!(
+ to_type,
+ DataType::Int8
+ | DataType::Int16
+ | DataType::Int32
+ | DataType::Int64
+ | DataType::Float32
+ | DataType::Float64
+ | DataType::Utf8
Review Comment:
So right now, there is not `Int8` to `Decimal128` cast supported, looks like?
##########
core/src/execution/datafusion/expressions/cast.rs:
##########
@@ -622,14 +590,89 @@ impl Cast {
self.eval_mode,
from_type,
to_type,
- )?
+ )
+ }
+ _ if Self::is_datafusion_spark_compatible(from_type, to_type) => {
+ // use DataFusion cast only when we know that it is compatible
with Spark
+ Ok(cast_with_options(&array, to_type, &CAST_OPTIONS)?)
}
_ => {
- // when we have no Spark-specific casting we delegate to
DataFusion
- cast_with_options(&array, to_type, &CAST_OPTIONS)?
+ // we should never reach this code because the Scala code
should be checking
+ // for supported cast operations and falling back to Spark for
anything that
+ // is not yet supported
+ Err(CometError::Internal(format!(
+ "Native cast invoked for unsupported cast from
{from_type:?} to {to_type:?}"
+ )))
}
};
- Ok(spark_cast(cast_result, from_type, to_type))
+ Ok(spark_cast(cast_result?, from_type, to_type))
+ }
+
+ /// Determines if DataFusion supports the given cast in a way that is
+ /// compatible with Spark
+ fn is_datafusion_spark_compatible(from_type: &DataType, to_type:
&DataType) -> bool {
+ if from_type == to_type {
+ return true;
+ }
+ match from_type {
+ DataType::Boolean => matches!(
+ to_type,
+ DataType::Int8
+ | DataType::Int16
+ | DataType::Int32
+ | DataType::Int64
+ | DataType::Float32
+ | DataType::Float64
+ | DataType::Utf8
+ ),
+ DataType::Int8 | DataType::Int16 | DataType::Int32 |
DataType::Int64 => matches!(
+ to_type,
+ DataType::Boolean
+ | DataType::Int8
+ | DataType::Int16
+ | DataType::Int32
+ | DataType::Int64
+ | DataType::Float32
+ | DataType::Float64
+ | DataType::Decimal128(_, _)
+ | DataType::Utf8
+ ),
+ DataType::Float32 | DataType::Float64 => matches!(
+ to_type,
+ DataType::Boolean
+ | DataType::Int8
+ | DataType::Int16
+ | DataType::Int32
+ | DataType::Int64
+ | DataType::Float32
+ | DataType::Float64
+ ),
+ DataType::Decimal128(_, _) | DataType::Decimal256(_, _) =>
matches!(
+ to_type,
+ DataType::Int8
+ | DataType::Int16
+ | DataType::Int32
+ | DataType::Int64
+ | DataType::Float32
+ | DataType::Float64
+ | DataType::Decimal128(_, _)
+ | DataType::Decimal256(_, _)
+ ),
+ DataType::Utf8 => matches!(to_type, DataType::Binary),
+ DataType::Date32 => matches!(to_type, DataType::Utf8),
+ DataType::Timestamp(_, _) => {
+ matches!(
+ to_type,
+ DataType::Int64 | DataType::Date32 | DataType::Utf8 |
DataType::Timestamp(_, _)
+ )
+ }
+ DataType::Binary => {
+ // note that this is not completely Spark compatible because
+ // DataFusion only supports binary data containing valid UTF-8
strings
+ matches!(to_type, DataType::Utf8)
+ }
+ _ => false,
Review Comment:
Casting to narrower type like `Int64` to `Int32` cases are not supported
when `self.eval_mode == EvalMode::Try`?
##########
core/src/execution/datafusion/expressions/cast.rs:
##########
@@ -622,14 +590,89 @@ impl Cast {
self.eval_mode,
from_type,
to_type,
- )?
+ )
+ }
+ _ if Self::is_datafusion_spark_compatible(from_type, to_type) => {
+ // use DataFusion cast only when we know that it is compatible
with Spark
+ Ok(cast_with_options(&array, to_type, &CAST_OPTIONS)?)
}
_ => {
- // when we have no Spark-specific casting we delegate to
DataFusion
- cast_with_options(&array, to_type, &CAST_OPTIONS)?
+ // we should never reach this code because the Scala code
should be checking
+ // for supported cast operations and falling back to Spark for
anything that
+ // is not yet supported
+ Err(CometError::Internal(format!(
+ "Native cast invoked for unsupported cast from
{from_type:?} to {to_type:?}"
+ )))
}
};
- Ok(spark_cast(cast_result, from_type, to_type))
+ Ok(spark_cast(cast_result?, from_type, to_type))
+ }
+
+ /// Determines if DataFusion supports the given cast in a way that is
+ /// compatible with Spark
+ fn is_datafusion_spark_compatible(from_type: &DataType, to_type:
&DataType) -> bool {
+ if from_type == to_type {
+ return true;
+ }
+ match from_type {
+ DataType::Boolean => matches!(
+ to_type,
+ DataType::Int8
+ | DataType::Int16
+ | DataType::Int32
+ | DataType::Int64
+ | DataType::Float32
+ | DataType::Float64
+ | DataType::Utf8
+ ),
+ DataType::Int8 | DataType::Int16 | DataType::Int32 |
DataType::Int64 => matches!(
+ to_type,
+ DataType::Boolean
+ | DataType::Int8
+ | DataType::Int16
+ | DataType::Int32
+ | DataType::Int64
+ | DataType::Float32
+ | DataType::Float64
+ | DataType::Decimal128(_, _)
+ | DataType::Utf8
+ ),
+ DataType::Float32 | DataType::Float64 => matches!(
+ to_type,
+ DataType::Boolean
+ | DataType::Int8
+ | DataType::Int16
+ | DataType::Int32
+ | DataType::Int64
+ | DataType::Float32
+ | DataType::Float64
Review Comment:
For `Float32/64` to `Int8/16/32/64`, I saw
`spark_cast_nonintegral_numeric_to_integral` covers them above.
Is this for the case `self.eval_mode == EvalMode::Try`?
--
This is an automated message from the Apache Git Service.
To respond to the message, please log on to GitHub and use the
URL above to go to the specific comment.
To unsubscribe, e-mail: [email protected]
For queries about this service, please contact Infrastructure at:
[email protected]
---------------------------------------------------------------------
To unsubscribe, e-mail: [email protected]
For additional commands, e-mail: [email protected]