Github user fhueske commented on a diff in the pull request:

    https://github.com/apache/flink/pull/1255#discussion_r43956068
  
    --- Diff: 
flink-optimizer/src/main/java/org/apache/flink/optimizer/traversals/RangePartitionRewriter.java
 ---
    @@ -0,0 +1,188 @@
    +/*
    + * Licensed to the Apache Software Foundation (ASF) under one
    + * or more contributor license agreements.  See the NOTICE file
    + * distributed with this work for additional information
    + * regarding copyright ownership.  The ASF licenses this file
    + * to you under the Apache License, Version 2.0 (the
    + * "License"); you may not use this file except in compliance
    + * with the License.  You may obtain a copy of the License at
    + *
    + *     http://www.apache.org/licenses/LICENSE-2.0
    + *
    + * Unless required by applicable law or agreed to in writing, software
    + * distributed under the License is distributed on an "AS IS" BASIS,
    + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    + * See the License for the specific language governing permissions and
    + * limitations under the License.
    + */
    +package org.apache.flink.optimizer.traversals;
    +
    +import org.apache.flink.api.common.distributions.CommonRangeBoundaries;
    +import org.apache.flink.api.common.operators.UnaryOperatorInformation;
    +import org.apache.flink.api.common.operators.base.GroupReduceOperatorBase;
    +import org.apache.flink.api.common.operators.base.MapOperatorBase;
    +import org.apache.flink.api.common.operators.base.MapPartitionOperatorBase;
    +import org.apache.flink.api.common.typeinfo.BasicTypeInfo;
    +import org.apache.flink.api.common.typeinfo.TypeInformation;
    +import org.apache.flink.api.common.typeutils.TypeComparatorFactory;
    +import org.apache.flink.api.java.functions.AssignRangeIndex;
    +import org.apache.flink.api.java.functions.PartitionIDRemoveWrapper;
    +import org.apache.flink.api.java.functions.RangeBoundaryBuilder;
    +import org.apache.flink.api.java.functions.SampleInCoordinator;
    +import org.apache.flink.api.java.functions.SampleInPartition;
    +import org.apache.flink.api.java.sampling.IntermediateSampleData;
    +import org.apache.flink.api.java.tuple.Tuple2;
    +import org.apache.flink.api.java.typeutils.TupleTypeInfo;
    +import org.apache.flink.api.java.typeutils.TypeExtractor;
    +import org.apache.flink.optimizer.dag.GroupReduceNode;
    +import org.apache.flink.optimizer.dag.MapNode;
    +import org.apache.flink.optimizer.dag.MapPartitionNode;
    +import org.apache.flink.optimizer.dag.TempMode;
    +import org.apache.flink.optimizer.plan.Channel;
    +import org.apache.flink.optimizer.plan.NamedChannel;
    +import org.apache.flink.optimizer.plan.OptimizedPlan;
    +import org.apache.flink.optimizer.plan.PlanNode;
    +import org.apache.flink.optimizer.plan.SingleInputPlanNode;
    +import org.apache.flink.optimizer.util.Utils;
    +import org.apache.flink.runtime.operators.DriverStrategy;
    +import org.apache.flink.runtime.operators.shipping.ShipStrategyType;
    +import org.apache.flink.util.Visitor;
    +
    +import java.util.ArrayList;
    +import java.util.LinkedList;
    +import java.util.List;
    +
    +public class RangePartitionRewriter implements Visitor<PlanNode> {
    +
    +   OptimizedPlan plan;
    +
    +   public RangePartitionRewriter(OptimizedPlan plan) {
    +           this.plan = plan;
    +   }
    +
    +   @Override
    +   public boolean preVisit(PlanNode visitable) {
    +           return true;
    +   }
    +
    +   @Override
    +   public void postVisit(PlanNode visitable) {
    +           List<Channel> outgoingChannels = 
visitable.getOutgoingChannels();
    +           List<Channel> appendOutgoingChannels = new LinkedList<>();
    +           List<Channel> removeOutgoingChannels = new LinkedList<>();
    +           for (Channel channel : outgoingChannels) {
    +                   ShipStrategyType shipStrategy = 
channel.getShipStrategy();
    +                   if (shipStrategy == ShipStrategyType.PARTITION_RANGE) {
    +                           if (channel.getDataDistribution() == null) {
    +                                   removeOutgoingChannels.add(channel);
    +                                   
appendOutgoingChannels.addAll(rewriteRangePartitionChannel(channel));
    +                           }
    +                   }
    +           }
    +           outgoingChannels.addAll(appendOutgoingChannels);
    +           for (Channel channel : removeOutgoingChannels) {
    +                   outgoingChannels.remove(channel);
    +           }
    +   }
    +
    +   private List<Channel> rewriteRangePartitionChannel(Channel channel) {
    +           List<Channel> appendOutgoingChannels = new LinkedList<>();
    +           PlanNode sourceNode = channel.getSource();
    +           PlanNode targetNode = channel.getTarget();
    +           int sourceParallelism = sourceNode.getParallelism();
    +           int targetParallelism = targetNode.getParallelism();
    +           TypeComparatorFactory<?> comparator = 
Utils.getShipComparator(channel, 
this.plan.getOriginalPlan().getExecutionConfig());
    +           // 1. Fixed size sample in each partitions.
    +           long seed = org.apache.flink.api.java.Utils.RNG.nextLong();
    +           int sampleSize = 20 * targetParallelism;
    +           SampleInPartition sampleInPartition = new 
SampleInPartition(false, sampleSize, seed);
    +           TypeInformation<?> sourceOutputType = 
sourceNode.getOptimizerNode().getOperator().getOperatorInfo().getOutputType();
    +           TypeInformation<IntermediateSampleData> isdTypeInformation = 
TypeExtractor.getForClass(IntermediateSampleData.class);
    +           UnaryOperatorInformation sipOperatorInformation = new 
UnaryOperatorInformation(sourceOutputType, isdTypeInformation);
    +           MapPartitionOperatorBase sipOperatorBase = new 
MapPartitionOperatorBase(sampleInPartition, sipOperatorInformation, "Sample in 
partitions");
    +           MapPartitionNode sipNode = new 
MapPartitionNode(sipOperatorBase);
    +           Channel sipChannel = new Channel(sourceNode, TempMode.NONE);
    +           sipChannel.setShipStrategy(ShipStrategyType.FORWARD, 
channel.getDataExchangeMode());
    +           SingleInputPlanNode sipPlanNode = new 
SingleInputPlanNode(sipNode, "SampleInPartition PlanNode", sipChannel, 
DriverStrategy.MAP_PARTITION);
    +           sipPlanNode.setParallelism(sourceParallelism);
    +           sipChannel.setTarget(sipPlanNode);
    +           appendOutgoingChannels.add(sipChannel);
    +           this.plan.getAllNodes().add(sipPlanNode);
    +
    +           // 2. Fixed size sample in a single coordinator.
    +           SampleInCoordinator sampleInCoordinator = new 
SampleInCoordinator(false, sampleSize, seed);
    +           UnaryOperatorInformation sicOperatorInformation = new 
UnaryOperatorInformation(isdTypeInformation, sourceOutputType);
    +           GroupReduceOperatorBase sicOperatorBase = new 
GroupReduceOperatorBase(sampleInCoordinator, sicOperatorInformation, "Sample in 
coordinator");
    +           GroupReduceNode sicNode = new GroupReduceNode(sicOperatorBase);
    +           Channel sicChannel = new Channel(sipPlanNode, TempMode.NONE);
    +           sicChannel.setShipStrategy(ShipStrategyType.PARTITION_HASH, 
channel.getShipStrategyKeys(), channel.getShipStrategySortOrder(), null, 
channel.getDataExchangeMode());
    +           SingleInputPlanNode sicPlanNode = new 
SingleInputPlanNode(sicNode, "SampleInCoordinator PlanNode", sicChannel, 
DriverStrategy.ALL_GROUP_REDUCE);
    +           sicPlanNode.setParallelism(1);
    +           sicChannel.setTarget(sicPlanNode);
    +           sipPlanNode.addOutgoingChannel(sicChannel);
    +           this.plan.getAllNodes().add(sicPlanNode);
    +
    +           // 3. Use sampled data to build range boundaries.
    +           RangeBoundaryBuilder rangeBoundaryBuilder = new 
RangeBoundaryBuilder(comparator, targetParallelism);
    +           TypeInformation<CommonRangeBoundaries> rbTypeInformation = 
TypeExtractor.getForClass(CommonRangeBoundaries.class);
    +           UnaryOperatorInformation rbOperatorInformation = new 
UnaryOperatorInformation(sourceOutputType, rbTypeInformation);
    +           MapPartitionOperatorBase rbOperatorBase = new 
MapPartitionOperatorBase(rangeBoundaryBuilder, rbOperatorInformation, 
"RangeBoundaryBuilder");
    +           MapPartitionNode rbNode= new MapPartitionNode(rbOperatorBase);
    +           Channel rbChannel = new Channel(sicPlanNode, TempMode.NONE);
    +           rbChannel.setShipStrategy(ShipStrategyType.FORWARD, 
channel.getDataExchangeMode());
    +           SingleInputPlanNode rbPlanNode = new 
SingleInputPlanNode(rbNode, "RangeBoundary PlanNode", rbChannel, 
DriverStrategy.MAP_PARTITION);
    +           rbPlanNode.setParallelism(1);
    +           rbChannel.setTarget(rbPlanNode);
    +           sicPlanNode.addOutgoingChannel(rbChannel);
    +           this.plan.getAllNodes().add(rbPlanNode);
    +
    +           // 4. Take range boundaries as broadcast input and take the 
tuple of partition id and record as output.
    +           AssignRangeIndex assignRangeIndex = new 
AssignRangeIndex(comparator);
    +           TypeInformation<Tuple2> ariOutputTypeInformation = new 
TupleTypeInfo<>(BasicTypeInfo.INT_TYPE_INFO, sourceOutputType);
    +           UnaryOperatorInformation ariOperatorInformation = new 
UnaryOperatorInformation(sourceOutputType, ariOutputTypeInformation);
    +           MapPartitionOperatorBase ariOperatorBase = new 
MapPartitionOperatorBase(assignRangeIndex, ariOperatorInformation, "Assign 
Range Index");
    +           MapPartitionNode ariNode= new MapPartitionNode(ariOperatorBase);
    +           Channel ariChannel = new Channel(sourceNode, TempMode.NONE);
    --- End diff --
    
    We need to be very careful at this point! We cannot add two channels to the 
same node (`sourceNode`) that pipeline the data, where one of the successors 
has to wait for the other to complete. In our case this is because of the 
broadcast set which implies that the boundaries are first computed and 
broadcasted before the idAssigner can start to process the data. Since we need 
to see all data from `sourceNode` in order to build the boundaries but have to 
wait for the boundaries to be able process the data from `sourceNode`, this 
will lead to a deadlock in the data flow.
    
    I have to admit, I am not sure how we can break the pipeline. Previously 
that was achieved by the `TempMode` but recently the `DataExchangeMode` was 
introduced and I am not quite sure write how both modes are different from each 
other and how they interact. I will ask another committer to comment on this.
     
    For now, I only want to raise a flag and get your attention on this issue.


---
If your project is set up for it, you can reply to this email and have your
reply appear on GitHub as well. If your project does not have this feature
enabled and wishes so, or if the feature is enabled but not working, please
contact infrastructure at [email protected] or file a JIRA ticket
with INFRA.
---

Reply via email to