Github user takuti commented on the issue:

    https://github.com/apache/incubator-hivemall/pull/149
  
    I'll change default options and consider to implement early stopping option 
as you suggested.
    
    > What happens without `-l2norm` ?
    
    Once we drop instance-wise L2 normalization, a model easily overfits to 
training samples, and prediction accuracy gets exceptionally worse.
    
    **LIBFFM**:
    
    ```
    $ ./ffm-train -k 4 -t 15 -l 0.00002 -r 0.2 -s 1 --no-norm ../tr.sp model
    First check if the text file has already been converted to binary format 
(0.0 seconds)
    Binary file NOT found. Convert text file to binary file (0.0 seconds)
    iter   tr_logloss      tr_time
       1      4.24374          0.0
       2      0.53960          0.1
       3      0.09525          0.2
       4      0.01288          0.2
       5      0.00215          0.3
       6      0.00133          0.3
       7      0.00112          0.3
       8      0.00098          0.4
       9      0.00089          0.4
      10      0.00082          0.5
      11      0.00076          0.5
      12      0.00072          0.6
      13      0.00068          0.6
      14      0.00064          0.6
      15      0.00061          0.7
    $ ./ffm-predict ../va.sp model submission.csv
    logloss = 1.75623
    ```
    
    **Hivemall**:
    
    ```
    Iteration #2 | average loss=0.5186307939402891, current cumulative 
loss=823.0670699832388, previous cumulative loss=6640.3299608989755, change 
rate=0.876050275388452, #trainingExamples=1587
    Iteration #3 | average loss=0.06870252595245425, current cumulative 
loss=109.0309086865449, previous cumulative loss=823.0670699832388, change 
rate=0.8675309550547743, #trainingExamples=1587
    Iteration #4 | average loss=0.01701292407900819, current cumulative 
loss=26.999510513386, previous cumulative loss=109.0309086865449, change 
rate=0.7523682886014696, #trainingExamples=1587
    Iteration #5 | average loss=0.003132377872105223, current cumulative 
loss=4.971083683030989, previous cumulative loss=26.999510513386, change 
rate=0.8158824516256917, #trainingExamples=1587
    Iteration #6 | average loss=0.001693780516846469, current cumulative 
loss=2.6880296802353465, previous cumulative loss=4.971083683030989, change 
rate=0.4592668617888987, #trainingExamples=1587
    Iteration #7 | average loss=0.0013357168592237345, current cumulative 
loss=2.1197826555880668, previous cumulative loss=2.6880296802353465, change 
rate=0.21139908864307172, #trainingExamples=1587
    Iteration #8 | average loss=0.0011459013923848537, current cumulative 
loss=1.8185455097147627, previous cumulative loss=2.1197826555880668, change 
rate=0.1421075623386188, #trainingExamples=1587
    Iteration #9 | average loss=0.001017751388111345, current cumulative 
loss=1.6151714529327046, previous cumulative loss=1.8185455097147627, change 
rate=0.11183336116452601, #trainingExamples=1587
    Iteration #10 | average loss=9.230266490923267E-4, current cumulative 
loss=1.4648432921095225, previous cumulative loss=1.6151714529327046, change 
rate=0.0930725716766649, #trainingExamples=1587
    Iteration #11 | average loss=8.493080071393429E-4, current cumulative 
loss=1.3478518073301373, previous cumulative loss=1.4648432921095225, change 
rate=0.07986621190783184, #trainingExamples=1587
    Iteration #12 | average loss=7.898623710141035E-4, current cumulative 
loss=1.2535115827993821, previous cumulative loss=1.3478518073301373, change 
rate=0.0699930244687856, #trainingExamples=1587
    Iteration #13 | average loss=7.406521210973545E-4, current cumulative 
loss=1.1754149161815017, previous cumulative loss=1.2535115827993821, change 
rate=0.06230230951952787, #trainingExamples=1587
    Iteration #14 | average loss=6.990685420175246E-4, current cumulative 
loss=1.1094217761818115, previous cumulative loss=1.1754149161815017, change 
rate=0.056144548696113294, #trainingExamples=1587
    Iteration #15 | average loss=6.633493164996776E-4, current cumulative 
loss=1.0527353652849885, previous cumulative loss=1.1094217761818115, change 
rate=0.051095455410939475, #trainingExamples=1587
    Performed 15 iterations of 1,587 training examples on memory (thus 23,805 
training updates in total)
    ```
    
    ```
    LogLoss: 1.8970086009757248
    ```


---

Reply via email to