>
>
>> 38 * 16 = 608
> 80 / 608 = 0.1316 seconds per plot
>
> At this point, I doubt you are going to get much more speed-ups. Glad to
> be of help!
>
> Fabrice -- Good suggestion! I should have thought of that given how much
> I use that technique in doing animation.
>
> Ben Root
>
>
I am including profiled runs for the records --only first 10 lines to keep
e-mail shorter. Total times are longer comparing to the raw run -p
executions. I believe profiled run has its own call overhead.
I1 run -p test_speed.py
171889738 function calls (169109959 primitive calls) in 374.311 seconds
Ordered by: internal time
ncalls tottime percall cumtime percall filename:lineno(function)
4548012 34.583 0.000 34.583 0.000 {numpy.core.multiarray.array}
1778401 21.012 0.000 46.227 0.000 path.py:86(__init__)
521816 17.844 0.000 17.844 0.000 artist.py:74(__init__)
2947090 15.432 0.000 15.432 0.000 weakref.py:243(__init__)
1778401 9.515 0.000 9.515 0.000 {method 'all' of
'numpy.ndarray' objects}
13691669 8.654 0.000 8.654 0.000 {getattr}
1085280 8.550 0.000 17.629 0.000 core.py:2749(_update_from)
1299904 7.809 0.000 76.060 0.000 markers.py:115(_recache)
38 7.378 0.194 7.378 0.194 {gc.collect}
13564851 6.768 0.000 6.768 0.000 {isinstance}
I1 run -p test_speed3.py
61658708 function calls (60685172 primitive calls) in 100.934 seconds
Ordered by: internal time
ncalls tottime percall cumtime percall filename:lineno(function)
937414 6.638 0.000 6.638 0.000 {numpy.core.multiarray.array}
374227 4.377 0.000 7.500 0.000 path.py:198(iter_segments)
6974613 3.866 0.000 3.866 0.000 {getattr}
542640 3.809 0.000 7.900 0.000 core.py:2749(_update_from)
141361 3.665 0.000 7.136 0.000 transforms.py:99(invalidate)
324688/161136 2.780 0.000 27.747 0.000
transforms.py:1729(transform)
64448 2.753 0.000 64.921 0.001 lines.py:463(draw)
231195 2.748 0.000 7.072 0.000 path.py:86(__init__)
684970/679449 2.679 0.000 3.888 0.000
backend_pdf.py:128(pdfRepr)
67526 2.651 0.000 7.522 0.000
backend_pdf.py:1226(pathOperations)
--
Gökhan
------------------------------------------------------------------------------
Live Security Virtual Conference
Exclusive live event will cover all the ways today's security and
threat landscape has changed and how IT managers can respond. Discussions
will include endpoint security, mobile security and the latest in malware
threats. http://www.accelacomm.com/jaw/sfrnl04242012/114/50122263/
_______________________________________________
Matplotlib-users mailing list
Matplotlib-users@lists.sourceforge.net
https://lists.sourceforge.net/lists/listinfo/matplotlib-users