MATPOWER does not currently include a way to set the transformer taps 
automatically during power flow. However, Gorazd Bone is working on this 
feature and has some work-in-progress sitting in pull request #16 
<https://github.com/MATPOWER/matpower/pull/16> on GitHub. Not sure if you would 
find any of that useful. This thread 
<https://www.mail-archive.com/[email protected]/msg00035.html> on the 
MATPOWER-DEV-L list is also relevant to that PR.

   Ray



> On Mar 21, 2018, at 1:01 PM, Mohammed Alhajri <[email protected]> wrote:
> 
> Hello All
> 
> i want to ask about the transformer ratio, how i can choose the best number 
> such that the voltage bus be in good agreement with the real value
> 
> my case is
> 
> ++++++++++++++++++++++++++
> 
> %%-----  Power Flow Data  -----%%
> %% system MVA base
> mpc.baseMVA = 100;
> 
> %% bus data
> %     bus_i   type    Pd      Qd      Gs      Bs      area    Vm      Va      
> baseKV  zone    Vmax    Vmin
> mpc.bus = [
> 1     3       6       2       0       0       1       1.045   0       220     
> 1       1.2     0.7;
> 2     1       0       0       0       0       1       1       0       220     
> 1       1.2     0.7;
> 3     2       37      12.2    0       0       1       1.052   0       220     
> 1       1.2     0.7;
> 4     1       0       0       0       0       1       1       0       220     
> 1       1.2     0.7;
> 5     1       89.1    40.1    0       0       1       1       0       220     
> 1       1.2     0.7;
> 6     1       0       0       0       0       1       1       0       220     
> 1       1.2     0.7;
> 7     2       62      20.4    0       0       1       1.037   0       220     
> 1       1.2     0.7;
> 8     1       0       0       0       0       1       1       0       220     
> 1       1.2     0.7;
> 9     1       0       0       0       0       1       1       0       400     
> 1       1.2     0.7;
> 10    1       0       0       0       0       1       1       0       220     
> 1       1.2     0.7;
> 11    2       6       2       0       0       1       1.042   0       220     
> 1       1.2     0.7;
> 12    1       0       0       0       0       1       1       0       220     
> 1       1.2     0.7;
> 13    1       112.7   46.8    0       40      1       1       0       132     
> 1       1.2     0.7;
> 14    1       19.4    7.7     0       0       1       1       0       132     
> 1       1.2     0.7;
> 15    1       73.2    29.5    0       0       1       1       0       132     
> 1       1.2     0.7;
> 16    2       7       2.3     0       0       1       1.018   0       132     
> 1       1.2     0.7;
> 17    1       168.1   65      0       0       1       1       0       132     
> 1       1.2     0.7;
> 18    1       288.4   134.4   0       40      1       1       0       132     
> 1       1.2     0.7;
> 19    1       165.1   69.2    0       0       1       1       0       132     
> 1       1.2     0.7;
> 20    1       87.2    35.8    0       0       1       1       0       132     
> 1       1.2     0.7;
> 21    1       118.1   50.7    0       40      1       1       0       132     
> 1       1.2     0.7;
> 22    1       144     59.3    0       40      1       1       0       132     
> 1       1.2     0.7;
> 23    1       0       0       0       40      1       1       0       132     
> 1       1.2     0.7;
> 24    1       77.3    31      0       40      1       1       0       132     
> 1       1.2     0.7;
> 25    1       50.1    19.7    0       0       1       1       0       132     
> 1       1.2     0.7;
> 26    1       128.4   56.3    0       0       1       1       0       132     
> 1       1.2     0.7;
> 27    1       143.5   59.7    0       0       1       1       0       132     
> 1       1.2     0.7;
> 28    1       136.9   61.1    0       0       1       1       0       132     
> 1       1.2     0.7;
> 29    1       97.5    40.4    0       40      1       1       0       132     
> 1       1.2     0.7;
> 30    1       98.6    41.4    0       0       1       1       0       132     
> 1       1.2     0.7;
> 31    1       147.3   67      0       0       1       1       0       132     
> 1       1.2     0.7;
> 32    1       0       0       0       0       1       1       0       132     
> 1       1.2     0.7;
> 33    1       240.2   103.8   0       40      1       1       0       132     
> 1       1.2     0.7;
> 34    2       7       2.3     0       0       1       0.993   0       132     
> 1       1.2     0.7;
> 35    1       132.4   55.9    0       0       1       1       0       132     
> 1       1.2     0.7;
> 36    1       117     50.5    0       40      1       1       0       132     
> 1       1.2     0.7;
> 37    1       24.2    9.6     0       0       1       1       0       132     
> 1       1.2     0.7;
> 38    1       13.2    4.9     0       0       1       1       0       132     
> 1       1.2     0.7;
> 39    1       58.8    23.4    0       0       1       1       0       132     
> 1       1.2     0.7;
> 40    1       85.3    34.6    0       40      1       1       0       132     
> 1       1.2     0.7;
> 41    1       0       0       0       0       1       1       0       220     
> 1       1.2     0.7;
> 42    1       0       0       0       0       1       1       0       220     
> 1       1.2     0.7;
> 43    1       225     74      0       0       1       1       0       220     
> 1       1.2     0.7;
> 44    1       193.4   58.9    0       0       1       1       0       132     
> 1       1.2     0.7;
> 45    1       0       0       0       0       1       1       0       220     
> 1       1.2     0.7;
> 46    1       147.3   59.4    0       40      1       1       0       132     
> 1       1.2     0.7;
> 47    1       28.7    10.8    0       10      1       1       0       132     
> 1       1.2     0.7;
> 48    1       61.8    16.4    0       10      1       1       0       132     
> 1       1.2     0.7;
> 49    1       71.3    28.2    0       0       1       1       0       132     
> 1       1.2     0.7;
> 50    1       86.3    35.6    0       0       1       1       0       132     
> 1       1.2     0.7;
> 51    1       0       0       0       0       1       1       0       132     
> 1       1.2     0.7;
> 52    1       101.1   42.3    0       0       1       1       0       132     
> 1       1.2     0.7;
> 53    2       6       2       0       0       1       1.02    0       132     
> 1       1.2     0.7;
> 54    1       47.4    19.4    0       0       1       1       0       132     
> 1       1.2     0.7;
> 55    1       44.6    17.4    0       0       1       1       0       132     
> 1       1.2     0.7;
> 56    1       116.4   46.4    0       0       1       1       0       132     
> 1       1.2     0.7;
> 57    1       50.1    19.7    0       0       1       1       0       132     
> 1       1.2     0.7;
> 58    1       0       0       0       0       1       1       0       220     
> 1       1.2     0.7;
> 59    1       0       0       0       0       1       1       0       400     
> 1       1.2     0.7;
> 60    1       0       0       0       0       1       1       0       400     
> 1       1.2     0.7;
> 61    2       12      3.9     0       0       1       1.006   0       220     
> 1       1.2     0.7;
> 62    1       0       0       0       0       1       1       0       220     
> 1       1.2     0.7;
> 63    1       83      33.4    0       0       1       1       0       132     
> 1       1.2     0.7;
> 64    1       78.1    31.4    0       0       1       1       0       132     
> 1       1.2     0.7;
> 65    1       83.2    34.3    0       0       1       1       0       132     
> 1       1.2     0.7;
> 66    2       6       2       0       0       1       1.017   0       132     
> 1       1.2     0.7;
> 67    1       82.5    33.2    0       0       1       1       0       132     
> 1       1.2     0.7;
> 68    1       120.9   52.2    0       0       1       1       0       132     
> 1       1.2     0.7;
> 69    1       80.4    32.2    0       0       1       1       0       132     
> 1       1.2     0.7;
> 70    1       76.8    30.7    0       0       1       1       0       132     
> 1       1.2     0.7;
> 71    1       39.7    15.1    0       40      1       1       0       132     
> 1       1.2     0.7;
> 72    1       8.3     3.5     0       0       1       1       0       132     
> 1       1.2     0.7;
> 73    1       47.3    18.1    0       0       1       1       0       132     
> 1       1.2     0.7;
> 74    1       87.2    36.3    0       0       1       1       0       132     
> 1       1.2     0.7;
> 75    1       0       0       0       0       1       1       0       132     
> 1       1.2     0.7;
> 76    2       0       0       0       0       1       1.004   0       132     
> 1       1.2     0.7;
> 77    1       73.2    28.9    0       40      1       1       0       132     
> 1       1.2     0.7;
> 78    1       0       0       0       0       1       1       0       132     
> 1       1.2     0.7;
> 79    1       0       0       0       0       1       1       0       220     
> 1       1.2     0.7;
> 80    1       79.8    31.8    0       0       1       1       0       132     
> 1       1.2     0.7;
> 81    1       141.7   58.3    0       40      1       1       0       132     
> 1       1.2     0.7;
> 82    1       98.8    41      0       40      1       1       0       132     
> 1       1.2     0.7;
> 83    1       76.2    30.9    0       0       1       1       0       132     
> 1       1.2     0.7;
> 84    1       35.2    13.2    0       0       1       1       0       132     
> 1       1.2     0.7;
> 85    2       35      11.5    0       0       1       0.991   0       132     
> 1       1.2     0.7;
> 86    2       139.1   54.5    0       0       1       0.991   0       132     
> 1       1.2     0.7;
> 87    1       175.4   75      0       40      1       1       0       132     
> 1       1.2     0.7;
> 88    1       0       0       0       0       1       1       0       220     
> 1       1.2     0.7;
> 89    1       271.2   121.8   0       40      1       1       0       132     
> 1       1.2     0.7;
> ];
> 
> %% generator data
> %     bus     Pg      Qg      Qmax    Qmin    Vg      mBase   status  Pmax    
> Pmin    Pc1     Pc2     Qc1min  Qc1max  Qc2min  Qc2max  ramp_agc        
> ramp_10 ramp_30 ramp_q  apf
> mpc.gen = [
> 1     432.26  180.3   498     -498    1.05    100     1       745     0       
> 0       0       0       0       0       0       0       0       0       0     
>   0;
> 3     735.72  348.83  350     -348.8  1       100     1       800     0       
> 0       0       0       0       0       0       0       0       0       0     
>   0;
> 7     1178    567.26  567.3   -567.3  1       100     1       1250    0       
> 0       0       0       0       0       0       0       0       0       0     
>   0;
> 11    430.62  59.21   296.4   -296.4  1       100     1       450     0       
> 0       0       0       0       0       0       0       0       0       0     
>   0;
> 16    600.34  197.23  266     -266    1       100     1       665     0       
> 0       0       0       0       0       0       0       0       0       0     
>   0;
> 34    281.34  140.15  150     -130    1       100     1       325     0       
> 0       0       0       0       0       0       0       0       0       0     
>   0;
> 53    260.3   114.62  120     -114.6  1       100     1       270     0       
> 0       0       0       0       0       0       0       0       0       0     
>   0;
> 61    1737.07 470.88  800     -800    1       100     1       2000    0       
> 0       0       0       0       0       0       0       0       0       0     
>   0;
> 66    208.21  102.09  108.4   -108.4  1       100     1       271     0       
> 0       0       0       0       0       0       0       0       0       0     
>   0;
> 76    83.3    49.5    55      -49.5   1       100     1       85      0       
> 0       0       0       0       0       0       0       0       0       0     
>   0;
> 85    168.1   36.4    40      -40     1       100     1       235     0       
> 0       0       0       0       0       0       0       0       0       0     
>   0;
> 86    83      35.4    122     -122    1       100     1       85      0       
> 0       0       0       0       0       0       0       0       0       0     
>   0;
> ];
> 
> %% branch data
> %     fbus    tbus    r       x       b       rateA   rateB   rateC   ratio   
> angle   status  angmin  angmax
> mpc.branch = [
> 60    9       0.000789        0.009643        0.9930  975     975     975     
> 1       0       1       -360    360;
> 60    59      0.001470        0.017964        1.8499  975     975     975     
> 1       0       1       -360    360;
> 43    3       0.000031        0.000929        0.1235  625     625     625     
> 1       0       1       -360    360;
> 41    42      0.001367        0.017012        0.0948  673     673     673     
> 1       0       1       -360    360;
> 7     6       0.000133        0.001658        0.0370  673     673     673     
> 1       0       1       -360    360;
> 6     12      0.000928        0.011540        0.0643  673     673     673     
> 1       0       1       -360    360;
> 12    10      0.000410        0.005107        0.0285  673     673     673     
> 1       0       1       -360    360;
> 10    88      0.000693        0.008622        0.0481  673     673     673     
> 1       0       1       -360    360;
> 10    8       0.001898        0.023611        0.1316  673     673     673     
> 1       0       1       -360    360;
> 4     2       0.002852        0.035482        0.1978  673     673     673     
> 1       0       1       -360    360;
> 3     2       0.001080        0.013967        0.2005  625     625     625     
> 1       0       1       -360    360;
> 41    2       0.001772        0.022052        0.1230  673     673     673     
> 1       0       1       -360    360;
> 5     4       0.001273        0.016945        0.3353  625     625     625     
> 1       0       1       -360    360;
> 6     5       0.000948        0.012847        0.3127  625     625     625     
> 1       0       1       -360    360;
> 41    45      0.003913        0.048681        0.2714  673     673     673     
> 1       0       1       -360    360;
> 1     2       0.001028        0.013331        0.1926  625     625     625     
> 1       0       1       -360    360;
> 11    10      0.001581        0.021687        0.5603  625     625     625     
> 1       0       1       -360    360;
> 61    62      0.000337        0.004190        0.0234  673     673     673     
> 1       0       1       -360    360;
> 8     79      0.000901        0.011208        0.0625  673     673     673     
> 1       0       1       -360    360;
> 66    67      0.006735        0.044361        0.0380  293     293     293     
> 1       0       1       -360    360;
> 66    69      0.006293        0.041447        0.0355  293     293     293     
> 1       0       1       -360    360;
> 66    65      0.003933        0.025904        0.0222  293     293     293     
> 1       0       1       -360    360;
> 63    65      0.003810        0.025095        0.0215  293     293     293     
> 1       0       1       -360    360;
> 22    23      0.000774        0.005100        0.0044  293     293     293     
> 1       0       1       -360    360;
> 57    68      0.004198        0.028095        0.0334  293     293     293     
> 1       0       1       -360    360;
> 55    49      0.003810        0.025095        0.0215  293     293     293     
> 1       0       1       -360    360;
> 53    49      0.002458        0.016190        0.0139  293     293     293     
> 1       0       1       -360    360;
> 18    17      0.000737        0.001440        0.1281  375     375     375     
> 1       0       1       -360    360;
> 21    22      0.001413        0.009309        0.0080  293     293     293     
> 1       0       1       -360    360;
> 75    82      0.001032        0.006800        0.0058  293     293     293     
> 1       0       1       -360    360;
> 68    69      0.007374        0.048571        0.0416  293     293     293     
> 1       0       1       -360    360;
> 26    28      0.001413        0.009309        0.0080  293     293     293     
> 1       0       1       -360    360;
> 49    51      0.075187        0.162712        0.0159  89      89      89      
> 1       0       1       -360    360;
> 49    52      0.007870        0.036253        0.0159  146     146     146     
> 1       0       1       -360    360;
> 49    46      0.015191        0.100056        0.0857  293     293     293     
> 1       0       1       -360    360;
> 16    56      0.004240        0.027928        0.0239  293     293     293     
> 1       0       1       -360    360;
> 27    26      0.003601        0.023719        0.0203  293     293     293     
> 1       0       1       -360    360;
> 32    33      0.003380        0.022262        0.0191  293     293     293     
> 1       0       1       -360    360;
> 33    34      0.003478        0.022909        0.0196  293     293     293     
> 1       0       1       -360    360;
> 56    55      0.007473        0.049219        0.0422  293     293     293     
> 1       0       1       -360    360;
> 82    83      0.000332        0.002186        0.0019  293     293     293     
> 1       0       1       -360    360;
> 34    37      0.007308        0.023818        0.0173  178     178     178     
> 1       0       1       -360    360;
> 53    54      0.005985        0.039423        0.0338  293     293     293     
> 1       0       1       -360    360;
> 86    89      0.000188        0.000368        0.0737  375     375     375     
> 1       0       1       -360    360;
> 89    87      0.001155        0.004534        0.0295  293     293     293     
> 1       0       1       -360    360;
> 86    87      0.000811        0.002723        0.2241  293     293     293     
> 1       0       1       -360    360;
> 76    75      0.000811        0.002723        0.2241  293     293     293     
> 1       0       1       -360    360;
> 85    86      0.000098        0.000192        0.0171  375     375     375     
> 1       0       1       -360    360;
> 13    14      0.001101        0.002150        0.1913  375     375     375     
> 1       0       1       -360    360;
> 34    35      0.003601        0.023719        0.0203  293     293     293     
> 1       0       1       -360    360;
> 35    36      0.002397        0.015786        0.0135  293     293     293     
> 1       0       1       -360    360;
> 29    31      0.006612        0.043552        0.0373  293     293     293     
> 1       0       1       -360    360;
> 31    32      0.002864        0.018862        0.0162  293     293     293     
> 1       0       1       -360    360;
> 37    38      0.003872        0.025500        0.0218  293     293     293     
> 1       0       1       -360    360;
> 71    72      0.001858        0.023121        0.0167  404     404     404     
> 1       0       1       -360    360;
> 16    84      0.001573        0.010362        0.0089  293     293     293     
> 1       0       1       -360    360;
> 84    82      0.004166        0.027443        0.0235  293     293     293     
> 1       0       1       -360    360;
> 23    24      0.002962        0.019509        0.0167  293     293     293     
> 1       0       1       -360    360;
> 37    40      0.004535        0.029871        0.0256  293     293     293     
> 1       0       1       -360    360;
> 75    77      0.001217        0.008014        0.0069  293     293     293     
> 1       0       1       -360    360;
> 46    47      0.006760        0.044523        0.0381  293     293     293     
> 1       0       1       -360    360;
> 71    73      0.005973        0.039342        0.0337  293     293     293     
> 1       0       1       -360    360;
> 49    50      0.001475        0.009714        0.0083  293     293     293     
> 1       0       1       -360    360;
> 81    78      0.000549        0.002420        0.0137  146     146     146     
> 1       0       1       -360    360;
> 78    80      0.000725        0.003010        0.0681  293     293     293     
> 1       0       1       -360    360;
> 63    64      0.004302        0.028333        0.0243  293     293     293     
> 1       0       1       -360    360;
> 78    82      0.000935        0.004305        0.0019  146     146     146     
> 1       0       1       -360    360;
> 77    78      0.000701        0.004614        0.0040  293     293     293     
> 1       0       1       -360    360;
> 16    17      0.000009        0.000017        0.0060  375     375     375     
> 1       0       1       -360    360;
> 23    25      0.001413        0.009309        0.0080  293     293     293     
> 1       0       1       -360    360;
> 25    26      0.004265        0.028090        0.0241  293     293     293     
> 1       0       1       -360    360;
> 47    48      0.006366        0.041933        0.0359  293     293     293     
> 1       0       1       -360    360;
> 13    18      0.001106        0.002159        0.1921  375     375     375     
> 1       0       1       -360    360;
> 13    15      0.000492        0.000960        0.0854  375     375     375     
> 1       0       1       -360    360;
> 28    30      0.003196        0.021047        0.0180  293     293     293     
> 1       0       1       -360    360;
> 30    29      0.003441        0.022666        0.0194  293     293     293     
> 1       0       1       -360    360;
> 37    39      0.004044        0.026633        0.0228  293     293     293     
> 1       0       1       -360    360;
> 39    40      0.000713        0.001562        0.1176  293     293     293     
> 1       0       1       -360    360;
> 18    19      0.000946        0.001847        0.1644  375     375     375     
> 1       0       1       -360    360;
> 74    71      0.002581        0.017000        0.0146  293     293     293     
> 1       0       1       -360    360;
> 75    74      0.002790        0.018376        0.0157  293     293     293     
> 1       0       1       -360    360;
> 69    70      0.003441        0.022666        0.0194  293     293     293     
> 1       0       1       -360    360;
> 57    55      0.001920        0.012291        0.0236  293     293     293     
> 1       0       1       -360    360;
> 20    19      0.000909        0.001775        0.1580  375     375     375     
> 1       0       1       -360    360;
> 21    20      0.001032        0.002015        0.1793  375     375     375     
> 1       0       1       -360    360;
> 60    61      0.000027        0.006133        0.0000  3750    3750    3750    
> 1.16    0       1       -360    360;
> 9     8       0.000075        0.011037        0.0000  2000    2000    2000    
> 1.02    0       1       -360    360;
> 59    58      0.000150        0.021479        0.0000  1000    1000    1000    
> 1.06    0       1       -360    360;
> 58    57      0.000000        0.023280        0.0000  1000    1000    1000    
> 1.01    0       1       -360    360;
> 6     23      0.000150        0.023263        0.0000  1000    1000    1000    
> 0.98    0       1       -360    360;
> 88    87      0.000150        0.023263        0.0000  1000    1000    1000    
> 1.01    0       1       -360    360;
> 43    44      0.000150        0.022261        0.0000  1000    1000    1000    
> 0.9     0       1       -360    360;
> 2     32      0.000150        0.021382        0.0000  1000    1000    1000    
> 0.95    0       1       -360    360;
> 4     28      0.000150        0.021382        0.0000  1000    1000    1000    
> 0.9     0       1       -360    360;
> 12    13      0.000150        0.023855        0.0000  1000    1000    1000    
> 1       0       1       -360    360;
> 45    46      0.000150        0.022261        0.0000  1000    1000    1000    
> 0.99    0       1       -360    360;
> 62    63      0.000150        0.023280        0.0000  1000    1000    1000    
> 1.02    0       1       -360    360;
> 79    78      0.000150        0.023280        0.0000  1000    1000    1000    
> 1.1     0       1       -360    360;
> 8     71      0.000150        0.023280        0.0000  1000    1000    1000    
> 1       0       1       -360    360;
> 41    37      0.000252        0.022170        0.0000  630     630     630     
> 1       0       1       -360    360;
> ];
> 
> ++++++++++++++++++++++++
> 
> and i got some buses relatively far from the real values
> 
> the real values of the voltage are attached 
> 
> On 21 March 2018 at 17:33, Carlos E Murillo-Sanchez 
> <[email protected] <mailto:[email protected]>> wrote:
> The Ybus matrix computed from the data in your file has NaN's and Inf's 
> because branch # 69 from bus 16 to bus 17 has zero series impedance.  You 
> must collapse buses 16 and 17 into a single bus before applying any algorithm 
> to the system because the electrical "distance" between these two buses is 
> zero.
> 
> Carlos.
> 
> Mohammed Alhajri wrote:
>> i got
>> 
>> ++++++++++++++++++++++++++++++++
>> 
>> 19980               NaN
>> 19981               NaN
>> 19982               NaN
>> 19983               NaN
>> 19984               NaN
>> 19985               NaN
>> 19986               NaN
>> 19987               NaN
>> 19988               NaN
>> 19989               NaN
>> 19990               NaN
>> 19991               NaN
>> 19992               NaN
>> 19993               NaN
>> 19994               NaN
>> 19995               NaN
>> 19996               NaN
>> 19997               NaN
>> 19998               NaN
>> 19999               NaN
>> 20000               NaN
>> Gauss-Seidel power flow did not converge in 20000 iterations.
>> 
>> >>>>>  Did NOT converge (47.99 seconds)  <<<<<
>> 
>> 
>> On 20 March 2018 at 19:44, Ray Zimmerman <[email protected] 
>> <mailto:[email protected]>> wrote:
>> Unfortunately, I do not have time to work on this myself. I was just giving 
>> a suggestion for another direction to try if you want to understand the 
>> issue that MATPOWER is having with your case. Could you post the output 
>> (using verbose set to 2) of runpf() when using a MATPOIWER case file that 
>> corresponds to the solved case from the Hadi Sadat code?
>> 
>> And if you have any questions about the MATPOWER case format or MATPOWER 
>> power flow options, feel free to ask.
>> 
>>     Ray
>> 
>> 
>> 
>>> On Mar 20, 2018, at 11:28 AM, Mohammed Alhajri <[email protected] 
>>> <mailto:[email protected]>> wrote:
>>> 
>>> Ok, i have attached the case information in format of Hadi Saadat code, can 
>>> you please try it in MATPOWER? 
>>> 
>>> because we have spent more than three weeks checking the format, but still 
>>> dose not converge... 
>>> 
>>> Regards,,, 
>>> 
>>> بتاريخ ٢٠١٨/٠٣/٢٠ ٦:٢٦ م، كتب "Ray Zimmerman" <[email protected] 
>>> <mailto:[email protected]>>:
>>> It’s possible that the modeling is not identical or that there is some 
>>> error in your conversion to MATPOWER format. You can check by talking the 
>>> solved case from your other software, converting that solved case to 
>>> MATPOWER and then trying the MATPOWER power flow. It should converge in a 
>>> single iteration. If it does not, then you know that there is either a 
>>> mistake somewhere or a difference in modeling.
>>> 
>>>    Ray
>>> 
>>> 
>>>> On Mar 16, 2018, at 12:42 PM, Mohammed Alhajri < 
>>>> <mailto:[email protected]>[email protected] <mailto:[email protected]>> 
>>>> wrote:
>>>> 
>>>> i tried that but unfortunately not work 
>>>> 
>>>> بتاريخ ٢٠١٨/٠٣/١٦ ٨:٣٠ م، كتب "Abhyankar, Shrirang G." < 
>>>> <mailto:[email protected]>[email protected] <mailto:[email protected]>>:
>>>> See FAQ #5 <http://www.pserc.cornell.edu/matpower/#pfconvergence>
>>>>  
>>>> Thanks,
>>>> 
>>>> Shri
>>>> 
>>>> Ph: (630) 252 0219 <tel:%28630%29%20252-0219>
>>>> www.mcs.anl.gov/~abhyshr <http://www.mcs.anl.gov/%7Eabhyshr>
>>>>  
>>>>  
>>>>  
>>>> 
>>>> From: <[email protected] 
>>>> <mailto:[email protected]>> on behalf of Mohammed 
>>>> Alhajri < <mailto:[email protected]>[email protected] 
>>>> <mailto:[email protected]>>
>>>> Reply-To: MATPOWER discussion forum < 
>>>> <mailto:[email protected]>[email protected] 
>>>> <mailto:[email protected]>>
>>>> Date: Friday, March 16, 2018 at 11:26 AM
>>>> To: MATPOWER discussion forum < 
>>>> <mailto:[email protected]>[email protected] 
>>>> <mailto:[email protected]>>
>>>> Subject: Re: Power Flow in Matpower
>>>> 
>>>>  
>>>> any answer to this question?
>>>> 
>>>>  
>>>> بتاريخ ٢٠١٨/٠٢/٢٥ ٧:١٨ م، كتب "Mohammed Alhajri" < 
>>>> <mailto:[email protected]>[email protected] <mailto:[email protected]>>:
>>>> 
>>>> Hello All,
>>>> 
>>>>  
>>>> I did the power flow for a 89-bus network and it converges using Hadi 
>>>> Sadat code after 17080 iterations. The accuracy was 1e-8 and the method is 
>>>> Gauss-Seidel Method.
>>>> 
>>>>  
>>>> But when I did the power flow using matpower it does not converge! I tried 
>>>> to increase the maximum iteration, I put it 100000, and still did not 
>>>> cnvarge!
>>>> 
>>>>  
>>>> I have attached the data according to Hadi Sadat Code, can any one try to 
>>>> do the power flow using matpower?
>>>> 
>>>>  
>>> 
>> 
>> 
> 
> 
> <Voltage Profile.xlsx>

Reply via email to