Yes, of course, you can change the tap ratio manually in the input case file. But with a large system and many transformers, that sounds like a very tedious process.
Ray > On Mar 22, 2018, at 1:31 AM, Mohammed Alhajri <[email protected]> wrote: > > it will be excellent, but i mean how i can change manually the best > transformer(s) tap(s) to correct the voltage? > > i tried to vary the (ratio) of the transformers in branch data matrix and run > PF to see the changes, is this way correct? > > if yes, any other ways? > > On 22 March 2018 at 01:19, Ray Zimmerman <[email protected] > <mailto:[email protected]>> wrote: > MATPOWER does not currently include a way to set the transformer taps > automatically during power flow. However, Gorazd Bone is working on this > feature and has some work-in-progress sitting in pull request #16 > <https://github.com/MATPOWER/matpower/pull/16> on GitHub. Not sure if you > would find any of that useful. This thread > <https://www.mail-archive.com/[email protected]/msg00035.html> on > the MATPOWER-DEV-L list is also relevant to that PR. > > Ray > > > >> On Mar 21, 2018, at 1:01 PM, Mohammed Alhajri <[email protected] >> <mailto:[email protected]>> wrote: >> >> Hello All >> >> i want to ask about the transformer ratio, how i can choose the best number >> such that the voltage bus be in good agreement with the real value >> >> my case is >> >> ++++++++++++++++++++++++++ >> >> %%----- Power Flow Data -----%% >> %% system MVA base >> mpc.baseMVA = 100; >> >> %% bus data >> % bus_i type Pd Qd Gs Bs area Vm Va >> baseKV zone Vmax Vmin >> mpc.bus = [ >> 1 3 6 2 0 0 1 1.045 0 220 >> 1 1.2 0.7; >> 2 1 0 0 0 0 1 1 0 220 >> 1 1.2 0.7; >> 3 2 37 12.2 0 0 1 1.052 0 220 >> 1 1.2 0.7; >> 4 1 0 0 0 0 1 1 0 220 >> 1 1.2 0.7; >> 5 1 89.1 40.1 0 0 1 1 0 220 >> 1 1.2 0.7; >> 6 1 0 0 0 0 1 1 0 220 >> 1 1.2 0.7; >> 7 2 62 20.4 0 0 1 1.037 0 220 >> 1 1.2 0.7; >> 8 1 0 0 0 0 1 1 0 220 >> 1 1.2 0.7; >> 9 1 0 0 0 0 1 1 0 400 >> 1 1.2 0.7; >> 10 1 0 0 0 0 1 1 0 220 >> 1 1.2 0.7; >> 11 2 6 2 0 0 1 1.042 0 220 >> 1 1.2 0.7; >> 12 1 0 0 0 0 1 1 0 220 >> 1 1.2 0.7; >> 13 1 112.7 46.8 0 40 1 1 0 132 >> 1 1.2 0.7; >> 14 1 19.4 7.7 0 0 1 1 0 132 >> 1 1.2 0.7; >> 15 1 73.2 29.5 0 0 1 1 0 132 >> 1 1.2 0.7; >> 16 2 7 2.3 0 0 1 1.018 0 132 >> 1 1.2 0.7; >> 17 1 168.1 65 0 0 1 1 0 132 >> 1 1.2 0.7; >> 18 1 288.4 134.4 0 40 1 1 0 132 >> 1 1.2 0.7; >> 19 1 165.1 69.2 0 0 1 1 0 132 >> 1 1.2 0.7; >> 20 1 87.2 35.8 0 0 1 1 0 132 >> 1 1.2 0.7; >> 21 1 118.1 50.7 0 40 1 1 0 132 >> 1 1.2 0.7; >> 22 1 144 59.3 0 40 1 1 0 132 >> 1 1.2 0.7; >> 23 1 0 0 0 40 1 1 0 132 >> 1 1.2 0.7; >> 24 1 77.3 31 0 40 1 1 0 132 >> 1 1.2 0.7; >> 25 1 50.1 19.7 0 0 1 1 0 132 >> 1 1.2 0.7; >> 26 1 128.4 56.3 0 0 1 1 0 132 >> 1 1.2 0.7; >> 27 1 143.5 59.7 0 0 1 1 0 132 >> 1 1.2 0.7; >> 28 1 136.9 61.1 0 0 1 1 0 132 >> 1 1.2 0.7; >> 29 1 97.5 40.4 0 40 1 1 0 132 >> 1 1.2 0.7; >> 30 1 98.6 41.4 0 0 1 1 0 132 >> 1 1.2 0.7; >> 31 1 147.3 67 0 0 1 1 0 132 >> 1 1.2 0.7; >> 32 1 0 0 0 0 1 1 0 132 >> 1 1.2 0.7; >> 33 1 240.2 103.8 0 40 1 1 0 132 >> 1 1.2 0.7; >> 34 2 7 2.3 0 0 1 0.993 0 132 >> 1 1.2 0.7; >> 35 1 132.4 55.9 0 0 1 1 0 132 >> 1 1.2 0.7; >> 36 1 117 50.5 0 40 1 1 0 132 >> 1 1.2 0.7; >> 37 1 24.2 9.6 0 0 1 1 0 132 >> 1 1.2 0.7; >> 38 1 13.2 4.9 0 0 1 1 0 132 >> 1 1.2 0.7; >> 39 1 58.8 23.4 0 0 1 1 0 132 >> 1 1.2 0.7; >> 40 1 85.3 34.6 0 40 1 1 0 132 >> 1 1.2 0.7; >> 41 1 0 0 0 0 1 1 0 220 >> 1 1.2 0.7; >> 42 1 0 0 0 0 1 1 0 220 >> 1 1.2 0.7; >> 43 1 225 74 0 0 1 1 0 220 >> 1 1.2 0.7; >> 44 1 193.4 58.9 0 0 1 1 0 132 >> 1 1.2 0.7; >> 45 1 0 0 0 0 1 1 0 220 >> 1 1.2 0.7; >> 46 1 147.3 59.4 0 40 1 1 0 132 >> 1 1.2 0.7; >> 47 1 28.7 10.8 0 10 1 1 0 132 >> 1 1.2 0.7; >> 48 1 61.8 16.4 0 10 1 1 0 132 >> 1 1.2 0.7; >> 49 1 71.3 28.2 0 0 1 1 0 132 >> 1 1.2 0.7; >> 50 1 86.3 35.6 0 0 1 1 0 132 >> 1 1.2 0.7; >> 51 1 0 0 0 0 1 1 0 132 >> 1 1.2 0.7; >> 52 1 101.1 42.3 0 0 1 1 0 132 >> 1 1.2 0.7; >> 53 2 6 2 0 0 1 1.02 0 132 >> 1 1.2 0.7; >> 54 1 47.4 19.4 0 0 1 1 0 132 >> 1 1.2 0.7; >> 55 1 44.6 17.4 0 0 1 1 0 132 >> 1 1.2 0.7; >> 56 1 116.4 46.4 0 0 1 1 0 132 >> 1 1.2 0.7; >> 57 1 50.1 19.7 0 0 1 1 0 132 >> 1 1.2 0.7; >> 58 1 0 0 0 0 1 1 0 220 >> 1 1.2 0.7; >> 59 1 0 0 0 0 1 1 0 400 >> 1 1.2 0.7; >> 60 1 0 0 0 0 1 1 0 400 >> 1 1.2 0.7; >> 61 2 12 3.9 0 0 1 1.006 0 220 >> 1 1.2 0.7; >> 62 1 0 0 0 0 1 1 0 220 >> 1 1.2 0.7; >> 63 1 83 33.4 0 0 1 1 0 132 >> 1 1.2 0.7; >> 64 1 78.1 31.4 0 0 1 1 0 132 >> 1 1.2 0.7; >> 65 1 83.2 34.3 0 0 1 1 0 132 >> 1 1.2 0.7; >> 66 2 6 2 0 0 1 1.017 0 132 >> 1 1.2 0.7; >> 67 1 82.5 33.2 0 0 1 1 0 132 >> 1 1.2 0.7; >> 68 1 120.9 52.2 0 0 1 1 0 132 >> 1 1.2 0.7; >> 69 1 80.4 32.2 0 0 1 1 0 132 >> 1 1.2 0.7; >> 70 1 76.8 30.7 0 0 1 1 0 132 >> 1 1.2 0.7; >> 71 1 39.7 15.1 0 40 1 1 0 132 >> 1 1.2 0.7; >> 72 1 8.3 3.5 0 0 1 1 0 132 >> 1 1.2 0.7; >> 73 1 47.3 18.1 0 0 1 1 0 132 >> 1 1.2 0.7; >> 74 1 87.2 36.3 0 0 1 1 0 132 >> 1 1.2 0.7; >> 75 1 0 0 0 0 1 1 0 132 >> 1 1.2 0.7; >> 76 2 0 0 0 0 1 1.004 0 132 >> 1 1.2 0.7; >> 77 1 73.2 28.9 0 40 1 1 0 132 >> 1 1.2 0.7; >> 78 1 0 0 0 0 1 1 0 132 >> 1 1.2 0.7; >> 79 1 0 0 0 0 1 1 0 220 >> 1 1.2 0.7; >> 80 1 79.8 31.8 0 0 1 1 0 132 >> 1 1.2 0.7; >> 81 1 141.7 58.3 0 40 1 1 0 132 >> 1 1.2 0.7; >> 82 1 98.8 41 0 40 1 1 0 132 >> 1 1.2 0.7; >> 83 1 76.2 30.9 0 0 1 1 0 132 >> 1 1.2 0.7; >> 84 1 35.2 13.2 0 0 1 1 0 132 >> 1 1.2 0.7; >> 85 2 35 11.5 0 0 1 0.991 0 132 >> 1 1.2 0.7; >> 86 2 139.1 54.5 0 0 1 0.991 0 132 >> 1 1.2 0.7; >> 87 1 175.4 75 0 40 1 1 0 132 >> 1 1.2 0.7; >> 88 1 0 0 0 0 1 1 0 220 >> 1 1.2 0.7; >> 89 1 271.2 121.8 0 40 1 1 0 132 >> 1 1.2 0.7; >> ]; >> >> %% generator data >> % bus Pg Qg Qmax Qmin Vg mBase status Pmax >> Pmin Pc1 Pc2 Qc1min Qc1max Qc2min Qc2max ramp_agc >> ramp_10 ramp_30 ramp_q apf >> mpc.gen = [ >> 1 432.26 180.3 498 -498 1.05 100 1 745 0 >> 0 0 0 0 0 0 0 0 0 0 >> 0; >> 3 735.72 348.83 350 -348.8 1 100 1 800 0 >> 0 0 0 0 0 0 0 0 0 0 >> 0; >> 7 1178 567.26 567.3 -567.3 1 100 1 1250 0 >> 0 0 0 0 0 0 0 0 0 0 >> 0; >> 11 430.62 59.21 296.4 -296.4 1 100 1 450 0 >> 0 0 0 0 0 0 0 0 0 0 >> 0; >> 16 600.34 197.23 266 -266 1 100 1 665 0 >> 0 0 0 0 0 0 0 0 0 0 >> 0; >> 34 281.34 140.15 150 -130 1 100 1 325 0 >> 0 0 0 0 0 0 0 0 0 0 >> 0; >> 53 260.3 114.62 120 -114.6 1 100 1 270 0 >> 0 0 0 0 0 0 0 0 0 0 >> 0; >> 61 1737.07 470.88 800 -800 1 100 1 2000 0 >> 0 0 0 0 0 0 0 0 0 0 >> 0; >> 66 208.21 102.09 108.4 -108.4 1 100 1 271 0 >> 0 0 0 0 0 0 0 0 0 0 >> 0; >> 76 83.3 49.5 55 -49.5 1 100 1 85 0 >> 0 0 0 0 0 0 0 0 0 0 >> 0; >> 85 168.1 36.4 40 -40 1 100 1 235 0 >> 0 0 0 0 0 0 0 0 0 0 >> 0; >> 86 83 35.4 122 -122 1 100 1 85 0 >> 0 0 0 0 0 0 0 0 0 0 >> 0; >> ]; >> >> %% branch data >> % fbus tbus r x b rateA rateB rateC ratio >> angle status angmin angmax >> mpc.branch = [ >> 60 9 0.000789 0.009643 0.9930 975 975 975 >> 1 0 1 -360 360; >> 60 59 0.001470 0.017964 1.8499 975 975 975 >> 1 0 1 -360 360; >> 43 3 0.000031 0.000929 0.1235 625 625 625 >> 1 0 1 -360 360; >> 41 42 0.001367 0.017012 0.0948 673 673 673 >> 1 0 1 -360 360; >> 7 6 0.000133 0.001658 0.0370 673 673 673 >> 1 0 1 -360 360; >> 6 12 0.000928 0.011540 0.0643 673 673 673 >> 1 0 1 -360 360; >> 12 10 0.000410 0.005107 0.0285 673 673 673 >> 1 0 1 -360 360; >> 10 88 0.000693 0.008622 0.0481 673 673 673 >> 1 0 1 -360 360; >> 10 8 0.001898 0.023611 0.1316 673 673 673 >> 1 0 1 -360 360; >> 4 2 0.002852 0.035482 0.1978 673 673 673 >> 1 0 1 -360 360; >> 3 2 0.001080 0.013967 0.2005 625 625 625 >> 1 0 1 -360 360; >> 41 2 0.001772 0.022052 0.1230 673 673 673 >> 1 0 1 -360 360; >> 5 4 0.001273 0.016945 0.3353 625 625 625 >> 1 0 1 -360 360; >> 6 5 0.000948 0.012847 0.3127 625 625 625 >> 1 0 1 -360 360; >> 41 45 0.003913 0.048681 0.2714 673 673 673 >> 1 0 1 -360 360; >> 1 2 0.001028 0.013331 0.1926 625 625 625 >> 1 0 1 -360 360; >> 11 10 0.001581 0.021687 0.5603 625 625 625 >> 1 0 1 -360 360; >> 61 62 0.000337 0.004190 0.0234 673 673 673 >> 1 0 1 -360 360; >> 8 79 0.000901 0.011208 0.0625 673 673 673 >> 1 0 1 -360 360; >> 66 67 0.006735 0.044361 0.0380 293 293 293 >> 1 0 1 -360 360; >> 66 69 0.006293 0.041447 0.0355 293 293 293 >> 1 0 1 -360 360; >> 66 65 0.003933 0.025904 0.0222 293 293 293 >> 1 0 1 -360 360; >> 63 65 0.003810 0.025095 0.0215 293 293 293 >> 1 0 1 -360 360; >> 22 23 0.000774 0.005100 0.0044 293 293 293 >> 1 0 1 -360 360; >> 57 68 0.004198 0.028095 0.0334 293 293 293 >> 1 0 1 -360 360; >> 55 49 0.003810 0.025095 0.0215 293 293 293 >> 1 0 1 -360 360; >> 53 49 0.002458 0.016190 0.0139 293 293 293 >> 1 0 1 -360 360; >> 18 17 0.000737 0.001440 0.1281 375 375 375 >> 1 0 1 -360 360; >> 21 22 0.001413 0.009309 0.0080 293 293 293 >> 1 0 1 -360 360; >> 75 82 0.001032 0.006800 0.0058 293 293 293 >> 1 0 1 -360 360; >> 68 69 0.007374 0.048571 0.0416 293 293 293 >> 1 0 1 -360 360; >> 26 28 0.001413 0.009309 0.0080 293 293 293 >> 1 0 1 -360 360; >> 49 51 0.075187 0.162712 0.0159 89 89 89 >> 1 0 1 -360 360; >> 49 52 0.007870 0.036253 0.0159 146 146 146 >> 1 0 1 -360 360; >> 49 46 0.015191 0.100056 0.0857 293 293 293 >> 1 0 1 -360 360; >> 16 56 0.004240 0.027928 0.0239 293 293 293 >> 1 0 1 -360 360; >> 27 26 0.003601 0.023719 0.0203 293 293 293 >> 1 0 1 -360 360; >> 32 33 0.003380 0.022262 0.0191 293 293 293 >> 1 0 1 -360 360; >> 33 34 0.003478 0.022909 0.0196 293 293 293 >> 1 0 1 -360 360; >> 56 55 0.007473 0.049219 0.0422 293 293 293 >> 1 0 1 -360 360; >> 82 83 0.000332 0.002186 0.0019 293 293 293 >> 1 0 1 -360 360; >> 34 37 0.007308 0.023818 0.0173 178 178 178 >> 1 0 1 -360 360; >> 53 54 0.005985 0.039423 0.0338 293 293 293 >> 1 0 1 -360 360; >> 86 89 0.000188 0.000368 0.0737 375 375 375 >> 1 0 1 -360 360; >> 89 87 0.001155 0.004534 0.0295 293 293 293 >> 1 0 1 -360 360; >> 86 87 0.000811 0.002723 0.2241 293 293 293 >> 1 0 1 -360 360; >> 76 75 0.000811 0.002723 0.2241 293 293 293 >> 1 0 1 -360 360; >> 85 86 0.000098 0.000192 0.0171 375 375 375 >> 1 0 1 -360 360; >> 13 14 0.001101 0.002150 0.1913 375 375 375 >> 1 0 1 -360 360; >> 34 35 0.003601 0.023719 0.0203 293 293 293 >> 1 0 1 -360 360; >> 35 36 0.002397 0.015786 0.0135 293 293 293 >> 1 0 1 -360 360; >> 29 31 0.006612 0.043552 0.0373 293 293 293 >> 1 0 1 -360 360; >> 31 32 0.002864 0.018862 0.0162 293 293 293 >> 1 0 1 -360 360; >> 37 38 0.003872 0.025500 0.0218 293 293 293 >> 1 0 1 -360 360; >> 71 72 0.001858 0.023121 0.0167 404 404 404 >> 1 0 1 -360 360; >> 16 84 0.001573 0.010362 0.0089 293 293 293 >> 1 0 1 -360 360; >> 84 82 0.004166 0.027443 0.0235 293 293 293 >> 1 0 1 -360 360; >> 23 24 0.002962 0.019509 0.0167 293 293 293 >> 1 0 1 -360 360; >> 37 40 0.004535 0.029871 0.0256 293 293 293 >> 1 0 1 -360 360; >> 75 77 0.001217 0.008014 0.0069 293 293 293 >> 1 0 1 -360 360; >> 46 47 0.006760 0.044523 0.0381 293 293 293 >> 1 0 1 -360 360; >> 71 73 0.005973 0.039342 0.0337 293 293 293 >> 1 0 1 -360 360; >> 49 50 0.001475 0.009714 0.0083 293 293 293 >> 1 0 1 -360 360; >> 81 78 0.000549 0.002420 0.0137 146 146 146 >> 1 0 1 -360 360; >> 78 80 0.000725 0.003010 0.0681 293 293 293 >> 1 0 1 -360 360; >> 63 64 0.004302 0.028333 0.0243 293 293 293 >> 1 0 1 -360 360; >> 78 82 0.000935 0.004305 0.0019 146 146 146 >> 1 0 1 -360 360; >> 77 78 0.000701 0.004614 0.0040 293 293 293 >> 1 0 1 -360 360; >> 16 17 0.000009 0.000017 0.0060 375 375 375 >> 1 0 1 -360 360; >> 23 25 0.001413 0.009309 0.0080 293 293 293 >> 1 0 1 -360 360; >> 25 26 0.004265 0.028090 0.0241 293 293 293 >> 1 0 1 -360 360; >> 47 48 0.006366 0.041933 0.0359 293 293 293 >> 1 0 1 -360 360; >> 13 18 0.001106 0.002159 0.1921 375 375 375 >> 1 0 1 -360 360; >> 13 15 0.000492 0.000960 0.0854 375 375 375 >> 1 0 1 -360 360; >> 28 30 0.003196 0.021047 0.0180 293 293 293 >> 1 0 1 -360 360; >> 30 29 0.003441 0.022666 0.0194 293 293 293 >> 1 0 1 -360 360; >> 37 39 0.004044 0.026633 0.0228 293 293 293 >> 1 0 1 -360 360; >> 39 40 0.000713 0.001562 0.1176 293 293 293 >> 1 0 1 -360 360; >> 18 19 0.000946 0.001847 0.1644 375 375 375 >> 1 0 1 -360 360; >> 74 71 0.002581 0.017000 0.0146 293 293 293 >> 1 0 1 -360 360; >> 75 74 0.002790 0.018376 0.0157 293 293 293 >> 1 0 1 -360 360; >> 69 70 0.003441 0.022666 0.0194 293 293 293 >> 1 0 1 -360 360; >> 57 55 0.001920 0.012291 0.0236 293 293 293 >> 1 0 1 -360 360; >> 20 19 0.000909 0.001775 0.1580 375 375 375 >> 1 0 1 -360 360; >> 21 20 0.001032 0.002015 0.1793 375 375 375 >> 1 0 1 -360 360; >> 60 61 0.000027 0.006133 0.0000 3750 3750 3750 >> 1.16 0 1 -360 360; >> 9 8 0.000075 0.011037 0.0000 2000 2000 2000 >> 1.02 0 1 -360 360; >> 59 58 0.000150 0.021479 0.0000 1000 1000 1000 >> 1.06 0 1 -360 360; >> 58 57 0.000000 0.023280 0.0000 1000 1000 1000 >> 1.01 0 1 -360 360; >> 6 23 0.000150 0.023263 0.0000 1000 1000 1000 >> 0.98 0 1 -360 360; >> 88 87 0.000150 0.023263 0.0000 1000 1000 1000 >> 1.01 0 1 -360 360; >> 43 44 0.000150 0.022261 0.0000 1000 1000 1000 >> 0.9 0 1 -360 360; >> 2 32 0.000150 0.021382 0.0000 1000 1000 1000 >> 0.95 0 1 -360 360; >> 4 28 0.000150 0.021382 0.0000 1000 1000 1000 >> 0.9 0 1 -360 360; >> 12 13 0.000150 0.023855 0.0000 1000 1000 1000 >> 1 0 1 -360 360; >> 45 46 0.000150 0.022261 0.0000 1000 1000 1000 >> 0.99 0 1 -360 360; >> 62 63 0.000150 0.023280 0.0000 1000 1000 1000 >> 1.02 0 1 -360 360; >> 79 78 0.000150 0.023280 0.0000 1000 1000 1000 >> 1.1 0 1 -360 360; >> 8 71 0.000150 0.023280 0.0000 1000 1000 1000 >> 1 0 1 -360 360; >> 41 37 0.000252 0.022170 0.0000 630 630 630 >> 1 0 1 -360 360; >> ]; >> >> ++++++++++++++++++++++++ >> >> and i got some buses relatively far from the real values >> >> the real values of the voltage are attached >> >> On 21 March 2018 at 17:33, Carlos E Murillo-Sanchez >> <[email protected] <mailto:[email protected]>> wrote: >> The Ybus matrix computed from the data in your file has NaN's and Inf's >> because branch # 69 from bus 16 to bus 17 has zero series impedance. You >> must collapse buses 16 and 17 into a single bus before applying any >> algorithm to the system because the electrical "distance" between these two >> buses is zero. >> >> Carlos. >> >> Mohammed Alhajri wrote: >>> i got >>> >>> ++++++++++++++++++++++++++++++++ >>> >>> 19980 NaN >>> 19981 NaN >>> 19982 NaN >>> 19983 NaN >>> 19984 NaN >>> 19985 NaN >>> 19986 NaN >>> 19987 NaN >>> 19988 NaN >>> 19989 NaN >>> 19990 NaN >>> 19991 NaN >>> 19992 NaN >>> 19993 NaN >>> 19994 NaN >>> 19995 NaN >>> 19996 NaN >>> 19997 NaN >>> 19998 NaN >>> 19999 NaN >>> 20000 NaN >>> Gauss-Seidel power flow did not converge in 20000 iterations. >>> >>> >>>>> Did NOT converge (47.99 seconds) <<<<< >>> >>> >>> On 20 March 2018 at 19:44, Ray Zimmerman <[email protected] >>> <mailto:[email protected]>> wrote: >>> Unfortunately, I do not have time to work on this myself. I was just giving >>> a suggestion for another direction to try if you want to understand the >>> issue that MATPOWER is having with your case. Could you post the output >>> (using verbose set to 2) of runpf() when using a MATPOIWER case file that >>> corresponds to the solved case from the Hadi Sadat code? >>> >>> And if you have any questions about the MATPOWER case format or MATPOWER >>> power flow options, feel free to ask. >>> >>> Ray >>> >>> >>> >>>> On Mar 20, 2018, at 11:28 AM, Mohammed Alhajri <[email protected] >>>> <mailto:[email protected]>> wrote: >>>> >>>> Ok, i have attached the case information in format of Hadi Saadat code, >>>> can you please try it in MATPOWER? >>>> >>>> because we have spent more than three weeks checking the format, but still >>>> dose not converge... >>>> >>>> Regards,,, >>>> >>>> بتاريخ ٢٠١٨/٠٣/٢٠ ٦:٢٦ م، كتب "Ray Zimmerman" <[email protected] >>>> <mailto:[email protected]>>: >>>> It’s possible that the modeling is not identical or that there is some >>>> error in your conversion to MATPOWER format. You can check by talking the >>>> solved case from your other software, converting that solved case to >>>> MATPOWER and then trying the MATPOWER power flow. It should converge in a >>>> single iteration. If it does not, then you know that there is either a >>>> mistake somewhere or a difference in modeling. >>>> >>>> Ray >>>> >>>> >>>>> On Mar 16, 2018, at 12:42 PM, Mohammed Alhajri < >>>>> <mailto:[email protected]>[email protected] <mailto:[email protected]>> >>>>> wrote: >>>>> >>>>> i tried that but unfortunately not work >>>>> >>>>> بتاريخ ٢٠١٨/٠٣/١٦ ٨:٣٠ م، كتب "Abhyankar, Shrirang G." < >>>>> <mailto:[email protected]>[email protected] <mailto:[email protected]>>: >>>>> See FAQ #5 <http://www.pserc.cornell.edu/matpower/#pfconvergence> >>>>> >>>>> Thanks, >>>>> >>>>> Shri >>>>> >>>>> Ph: (630) 252 0219 <tel:%28630%29%20252-0219> >>>>> www.mcs.anl.gov/~abhyshr <http://www.mcs.anl.gov/%7Eabhyshr> >>>>> >>>>> >>>>> >>>>> >>>>> From: <[email protected] >>>>> <mailto:[email protected]>> on behalf of >>>>> Mohammed Alhajri < <mailto:[email protected]>[email protected] >>>>> <mailto:[email protected]>> >>>>> Reply-To: MATPOWER discussion forum < >>>>> <mailto:[email protected]>[email protected] >>>>> <mailto:[email protected]>> >>>>> Date: Friday, March 16, 2018 at 11:26 AM >>>>> To: MATPOWER discussion forum < >>>>> <mailto:[email protected]>[email protected] >>>>> <mailto:[email protected]>> >>>>> Subject: Re: Power Flow in Matpower >>>>> >>>>> >>>>> any answer to this question? >>>>> >>>>> >>>>> بتاريخ ٢٠١٨/٠٢/٢٥ ٧:١٨ م، كتب "Mohammed Alhajri" < >>>>> <mailto:[email protected]>[email protected] <mailto:[email protected]>>: >>>>> >>>>> Hello All, >>>>> >>>>> >>>>> I did the power flow for a 89-bus network and it converges using Hadi >>>>> Sadat code after 17080 iterations. The accuracy was 1e-8 and the method >>>>> is Gauss-Seidel Method. >>>>> >>>>> >>>>> But when I did the power flow using matpower it does not converge! I >>>>> tried to increase the maximum iteration, I put it 100000, and still did >>>>> not cnvarge! >>>>> >>>>> >>>>> I have attached the data according to Hadi Sadat Code, can any one try to >>>>> do the power flow using matpower? >>>>> >>>>> >>>> >>> >>> >> >> >> <Voltage Profile.xlsx> > >
