Yes, of course, you can change the tap ratio manually in the input case file. 
But with a large system and many transformers, that sounds like a very tedious 
process.

   Ray


> On Mar 22, 2018, at 1:31 AM, Mohammed Alhajri <[email protected]> wrote:
> 
> it will be excellent, but i mean how i can change manually the best 
> transformer(s) tap(s) to correct the voltage?
> 
> i tried to vary the (ratio) of the transformers in branch data matrix and run 
> PF to see the changes, is this way correct?
> 
> if yes, any other ways?  
> 
> On 22 March 2018 at 01:19, Ray Zimmerman <[email protected] 
> <mailto:[email protected]>> wrote:
> MATPOWER does not currently include a way to set the transformer taps 
> automatically during power flow. However, Gorazd Bone is working on this 
> feature and has some work-in-progress sitting in pull request #16 
> <https://github.com/MATPOWER/matpower/pull/16> on GitHub. Not sure if you 
> would find any of that useful. This thread 
> <https://www.mail-archive.com/[email protected]/msg00035.html> on 
> the MATPOWER-DEV-L list is also relevant to that PR.
> 
>    Ray
> 
> 
> 
>> On Mar 21, 2018, at 1:01 PM, Mohammed Alhajri <[email protected] 
>> <mailto:[email protected]>> wrote:
>> 
>> Hello All
>> 
>> i want to ask about the transformer ratio, how i can choose the best number 
>> such that the voltage bus be in good agreement with the real value
>> 
>> my case is
>> 
>> ++++++++++++++++++++++++++
>> 
>> %%-----  Power Flow Data  -----%%
>> %% system MVA base
>> mpc.baseMVA = 100;
>> 
>> %% bus data
>> %    bus_i   type    Pd      Qd      Gs      Bs      area    Vm      Va      
>> baseKV  zone    Vmax    Vmin
>> mpc.bus = [
>> 1    3       6       2       0       0       1       1.045   0       220     
>> 1       1.2     0.7;
>> 2    1       0       0       0       0       1       1       0       220     
>> 1       1.2     0.7;
>> 3    2       37      12.2    0       0       1       1.052   0       220     
>> 1       1.2     0.7;
>> 4    1       0       0       0       0       1       1       0       220     
>> 1       1.2     0.7;
>> 5    1       89.1    40.1    0       0       1       1       0       220     
>> 1       1.2     0.7;
>> 6    1       0       0       0       0       1       1       0       220     
>> 1       1.2     0.7;
>> 7    2       62      20.4    0       0       1       1.037   0       220     
>> 1       1.2     0.7;
>> 8    1       0       0       0       0       1       1       0       220     
>> 1       1.2     0.7;
>> 9    1       0       0       0       0       1       1       0       400     
>> 1       1.2     0.7;
>> 10   1       0       0       0       0       1       1       0       220     
>> 1       1.2     0.7;
>> 11   2       6       2       0       0       1       1.042   0       220     
>> 1       1.2     0.7;
>> 12   1       0       0       0       0       1       1       0       220     
>> 1       1.2     0.7;
>> 13   1       112.7   46.8    0       40      1       1       0       132     
>> 1       1.2     0.7;
>> 14   1       19.4    7.7     0       0       1       1       0       132     
>> 1       1.2     0.7;
>> 15   1       73.2    29.5    0       0       1       1       0       132     
>> 1       1.2     0.7;
>> 16   2       7       2.3     0       0       1       1.018   0       132     
>> 1       1.2     0.7;
>> 17   1       168.1   65      0       0       1       1       0       132     
>> 1       1.2     0.7;
>> 18   1       288.4   134.4   0       40      1       1       0       132     
>> 1       1.2     0.7;
>> 19   1       165.1   69.2    0       0       1       1       0       132     
>> 1       1.2     0.7;
>> 20   1       87.2    35.8    0       0       1       1       0       132     
>> 1       1.2     0.7;
>> 21   1       118.1   50.7    0       40      1       1       0       132     
>> 1       1.2     0.7;
>> 22   1       144     59.3    0       40      1       1       0       132     
>> 1       1.2     0.7;
>> 23   1       0       0       0       40      1       1       0       132     
>> 1       1.2     0.7;
>> 24   1       77.3    31      0       40      1       1       0       132     
>> 1       1.2     0.7;
>> 25   1       50.1    19.7    0       0       1       1       0       132     
>> 1       1.2     0.7;
>> 26   1       128.4   56.3    0       0       1       1       0       132     
>> 1       1.2     0.7;
>> 27   1       143.5   59.7    0       0       1       1       0       132     
>> 1       1.2     0.7;
>> 28   1       136.9   61.1    0       0       1       1       0       132     
>> 1       1.2     0.7;
>> 29   1       97.5    40.4    0       40      1       1       0       132     
>> 1       1.2     0.7;
>> 30   1       98.6    41.4    0       0       1       1       0       132     
>> 1       1.2     0.7;
>> 31   1       147.3   67      0       0       1       1       0       132     
>> 1       1.2     0.7;
>> 32   1       0       0       0       0       1       1       0       132     
>> 1       1.2     0.7;
>> 33   1       240.2   103.8   0       40      1       1       0       132     
>> 1       1.2     0.7;
>> 34   2       7       2.3     0       0       1       0.993   0       132     
>> 1       1.2     0.7;
>> 35   1       132.4   55.9    0       0       1       1       0       132     
>> 1       1.2     0.7;
>> 36   1       117     50.5    0       40      1       1       0       132     
>> 1       1.2     0.7;
>> 37   1       24.2    9.6     0       0       1       1       0       132     
>> 1       1.2     0.7;
>> 38   1       13.2    4.9     0       0       1       1       0       132     
>> 1       1.2     0.7;
>> 39   1       58.8    23.4    0       0       1       1       0       132     
>> 1       1.2     0.7;
>> 40   1       85.3    34.6    0       40      1       1       0       132     
>> 1       1.2     0.7;
>> 41   1       0       0       0       0       1       1       0       220     
>> 1       1.2     0.7;
>> 42   1       0       0       0       0       1       1       0       220     
>> 1       1.2     0.7;
>> 43   1       225     74      0       0       1       1       0       220     
>> 1       1.2     0.7;
>> 44   1       193.4   58.9    0       0       1       1       0       132     
>> 1       1.2     0.7;
>> 45   1       0       0       0       0       1       1       0       220     
>> 1       1.2     0.7;
>> 46   1       147.3   59.4    0       40      1       1       0       132     
>> 1       1.2     0.7;
>> 47   1       28.7    10.8    0       10      1       1       0       132     
>> 1       1.2     0.7;
>> 48   1       61.8    16.4    0       10      1       1       0       132     
>> 1       1.2     0.7;
>> 49   1       71.3    28.2    0       0       1       1       0       132     
>> 1       1.2     0.7;
>> 50   1       86.3    35.6    0       0       1       1       0       132     
>> 1       1.2     0.7;
>> 51   1       0       0       0       0       1       1       0       132     
>> 1       1.2     0.7;
>> 52   1       101.1   42.3    0       0       1       1       0       132     
>> 1       1.2     0.7;
>> 53   2       6       2       0       0       1       1.02    0       132     
>> 1       1.2     0.7;
>> 54   1       47.4    19.4    0       0       1       1       0       132     
>> 1       1.2     0.7;
>> 55   1       44.6    17.4    0       0       1       1       0       132     
>> 1       1.2     0.7;
>> 56   1       116.4   46.4    0       0       1       1       0       132     
>> 1       1.2     0.7;
>> 57   1       50.1    19.7    0       0       1       1       0       132     
>> 1       1.2     0.7;
>> 58   1       0       0       0       0       1       1       0       220     
>> 1       1.2     0.7;
>> 59   1       0       0       0       0       1       1       0       400     
>> 1       1.2     0.7;
>> 60   1       0       0       0       0       1       1       0       400     
>> 1       1.2     0.7;
>> 61   2       12      3.9     0       0       1       1.006   0       220     
>> 1       1.2     0.7;
>> 62   1       0       0       0       0       1       1       0       220     
>> 1       1.2     0.7;
>> 63   1       83      33.4    0       0       1       1       0       132     
>> 1       1.2     0.7;
>> 64   1       78.1    31.4    0       0       1       1       0       132     
>> 1       1.2     0.7;
>> 65   1       83.2    34.3    0       0       1       1       0       132     
>> 1       1.2     0.7;
>> 66   2       6       2       0       0       1       1.017   0       132     
>> 1       1.2     0.7;
>> 67   1       82.5    33.2    0       0       1       1       0       132     
>> 1       1.2     0.7;
>> 68   1       120.9   52.2    0       0       1       1       0       132     
>> 1       1.2     0.7;
>> 69   1       80.4    32.2    0       0       1       1       0       132     
>> 1       1.2     0.7;
>> 70   1       76.8    30.7    0       0       1       1       0       132     
>> 1       1.2     0.7;
>> 71   1       39.7    15.1    0       40      1       1       0       132     
>> 1       1.2     0.7;
>> 72   1       8.3     3.5     0       0       1       1       0       132     
>> 1       1.2     0.7;
>> 73   1       47.3    18.1    0       0       1       1       0       132     
>> 1       1.2     0.7;
>> 74   1       87.2    36.3    0       0       1       1       0       132     
>> 1       1.2     0.7;
>> 75   1       0       0       0       0       1       1       0       132     
>> 1       1.2     0.7;
>> 76   2       0       0       0       0       1       1.004   0       132     
>> 1       1.2     0.7;
>> 77   1       73.2    28.9    0       40      1       1       0       132     
>> 1       1.2     0.7;
>> 78   1       0       0       0       0       1       1       0       132     
>> 1       1.2     0.7;
>> 79   1       0       0       0       0       1       1       0       220     
>> 1       1.2     0.7;
>> 80   1       79.8    31.8    0       0       1       1       0       132     
>> 1       1.2     0.7;
>> 81   1       141.7   58.3    0       40      1       1       0       132     
>> 1       1.2     0.7;
>> 82   1       98.8    41      0       40      1       1       0       132     
>> 1       1.2     0.7;
>> 83   1       76.2    30.9    0       0       1       1       0       132     
>> 1       1.2     0.7;
>> 84   1       35.2    13.2    0       0       1       1       0       132     
>> 1       1.2     0.7;
>> 85   2       35      11.5    0       0       1       0.991   0       132     
>> 1       1.2     0.7;
>> 86   2       139.1   54.5    0       0       1       0.991   0       132     
>> 1       1.2     0.7;
>> 87   1       175.4   75      0       40      1       1       0       132     
>> 1       1.2     0.7;
>> 88   1       0       0       0       0       1       1       0       220     
>> 1       1.2     0.7;
>> 89   1       271.2   121.8   0       40      1       1       0       132     
>> 1       1.2     0.7;
>> ];
>> 
>> %% generator data
>> %    bus     Pg      Qg      Qmax    Qmin    Vg      mBase   status  Pmax    
>> Pmin    Pc1     Pc2     Qc1min  Qc1max  Qc2min  Qc2max  ramp_agc        
>> ramp_10 ramp_30 ramp_q  apf
>> mpc.gen = [
>> 1    432.26  180.3   498     -498    1.05    100     1       745     0       
>> 0       0       0       0       0       0       0       0       0       0    
>>    0;
>> 3    735.72  348.83  350     -348.8  1       100     1       800     0       
>> 0       0       0       0       0       0       0       0       0       0    
>>    0;
>> 7    1178    567.26  567.3   -567.3  1       100     1       1250    0       
>> 0       0       0       0       0       0       0       0       0       0    
>>    0;
>> 11   430.62  59.21   296.4   -296.4  1       100     1       450     0       
>> 0       0       0       0       0       0       0       0       0       0    
>>    0;
>> 16   600.34  197.23  266     -266    1       100     1       665     0       
>> 0       0       0       0       0       0       0       0       0       0    
>>    0;
>> 34   281.34  140.15  150     -130    1       100     1       325     0       
>> 0       0       0       0       0       0       0       0       0       0    
>>    0;
>> 53   260.3   114.62  120     -114.6  1       100     1       270     0       
>> 0       0       0       0       0       0       0       0       0       0    
>>    0;
>> 61   1737.07 470.88  800     -800    1       100     1       2000    0       
>> 0       0       0       0       0       0       0       0       0       0    
>>    0;
>> 66   208.21  102.09  108.4   -108.4  1       100     1       271     0       
>> 0       0       0       0       0       0       0       0       0       0    
>>    0;
>> 76   83.3    49.5    55      -49.5   1       100     1       85      0       
>> 0       0       0       0       0       0       0       0       0       0    
>>    0;
>> 85   168.1   36.4    40      -40     1       100     1       235     0       
>> 0       0       0       0       0       0       0       0       0       0    
>>    0;
>> 86   83      35.4    122     -122    1       100     1       85      0       
>> 0       0       0       0       0       0       0       0       0       0    
>>    0;
>> ];
>> 
>> %% branch data
>> %    fbus    tbus    r       x       b       rateA   rateB   rateC   ratio   
>> angle   status  angmin  angmax
>> mpc.branch = [
>> 60   9       0.000789        0.009643        0.9930  975     975     975     
>> 1       0       1       -360    360;
>> 60   59      0.001470        0.017964        1.8499  975     975     975     
>> 1       0       1       -360    360;
>> 43   3       0.000031        0.000929        0.1235  625     625     625     
>> 1       0       1       -360    360;
>> 41   42      0.001367        0.017012        0.0948  673     673     673     
>> 1       0       1       -360    360;
>> 7    6       0.000133        0.001658        0.0370  673     673     673     
>> 1       0       1       -360    360;
>> 6    12      0.000928        0.011540        0.0643  673     673     673     
>> 1       0       1       -360    360;
>> 12   10      0.000410        0.005107        0.0285  673     673     673     
>> 1       0       1       -360    360;
>> 10   88      0.000693        0.008622        0.0481  673     673     673     
>> 1       0       1       -360    360;
>> 10   8       0.001898        0.023611        0.1316  673     673     673     
>> 1       0       1       -360    360;
>> 4    2       0.002852        0.035482        0.1978  673     673     673     
>> 1       0       1       -360    360;
>> 3    2       0.001080        0.013967        0.2005  625     625     625     
>> 1       0       1       -360    360;
>> 41   2       0.001772        0.022052        0.1230  673     673     673     
>> 1       0       1       -360    360;
>> 5    4       0.001273        0.016945        0.3353  625     625     625     
>> 1       0       1       -360    360;
>> 6    5       0.000948        0.012847        0.3127  625     625     625     
>> 1       0       1       -360    360;
>> 41   45      0.003913        0.048681        0.2714  673     673     673     
>> 1       0       1       -360    360;
>> 1    2       0.001028        0.013331        0.1926  625     625     625     
>> 1       0       1       -360    360;
>> 11   10      0.001581        0.021687        0.5603  625     625     625     
>> 1       0       1       -360    360;
>> 61   62      0.000337        0.004190        0.0234  673     673     673     
>> 1       0       1       -360    360;
>> 8    79      0.000901        0.011208        0.0625  673     673     673     
>> 1       0       1       -360    360;
>> 66   67      0.006735        0.044361        0.0380  293     293     293     
>> 1       0       1       -360    360;
>> 66   69      0.006293        0.041447        0.0355  293     293     293     
>> 1       0       1       -360    360;
>> 66   65      0.003933        0.025904        0.0222  293     293     293     
>> 1       0       1       -360    360;
>> 63   65      0.003810        0.025095        0.0215  293     293     293     
>> 1       0       1       -360    360;
>> 22   23      0.000774        0.005100        0.0044  293     293     293     
>> 1       0       1       -360    360;
>> 57   68      0.004198        0.028095        0.0334  293     293     293     
>> 1       0       1       -360    360;
>> 55   49      0.003810        0.025095        0.0215  293     293     293     
>> 1       0       1       -360    360;
>> 53   49      0.002458        0.016190        0.0139  293     293     293     
>> 1       0       1       -360    360;
>> 18   17      0.000737        0.001440        0.1281  375     375     375     
>> 1       0       1       -360    360;
>> 21   22      0.001413        0.009309        0.0080  293     293     293     
>> 1       0       1       -360    360;
>> 75   82      0.001032        0.006800        0.0058  293     293     293     
>> 1       0       1       -360    360;
>> 68   69      0.007374        0.048571        0.0416  293     293     293     
>> 1       0       1       -360    360;
>> 26   28      0.001413        0.009309        0.0080  293     293     293     
>> 1       0       1       -360    360;
>> 49   51      0.075187        0.162712        0.0159  89      89      89      
>> 1       0       1       -360    360;
>> 49   52      0.007870        0.036253        0.0159  146     146     146     
>> 1       0       1       -360    360;
>> 49   46      0.015191        0.100056        0.0857  293     293     293     
>> 1       0       1       -360    360;
>> 16   56      0.004240        0.027928        0.0239  293     293     293     
>> 1       0       1       -360    360;
>> 27   26      0.003601        0.023719        0.0203  293     293     293     
>> 1       0       1       -360    360;
>> 32   33      0.003380        0.022262        0.0191  293     293     293     
>> 1       0       1       -360    360;
>> 33   34      0.003478        0.022909        0.0196  293     293     293     
>> 1       0       1       -360    360;
>> 56   55      0.007473        0.049219        0.0422  293     293     293     
>> 1       0       1       -360    360;
>> 82   83      0.000332        0.002186        0.0019  293     293     293     
>> 1       0       1       -360    360;
>> 34   37      0.007308        0.023818        0.0173  178     178     178     
>> 1       0       1       -360    360;
>> 53   54      0.005985        0.039423        0.0338  293     293     293     
>> 1       0       1       -360    360;
>> 86   89      0.000188        0.000368        0.0737  375     375     375     
>> 1       0       1       -360    360;
>> 89   87      0.001155        0.004534        0.0295  293     293     293     
>> 1       0       1       -360    360;
>> 86   87      0.000811        0.002723        0.2241  293     293     293     
>> 1       0       1       -360    360;
>> 76   75      0.000811        0.002723        0.2241  293     293     293     
>> 1       0       1       -360    360;
>> 85   86      0.000098        0.000192        0.0171  375     375     375     
>> 1       0       1       -360    360;
>> 13   14      0.001101        0.002150        0.1913  375     375     375     
>> 1       0       1       -360    360;
>> 34   35      0.003601        0.023719        0.0203  293     293     293     
>> 1       0       1       -360    360;
>> 35   36      0.002397        0.015786        0.0135  293     293     293     
>> 1       0       1       -360    360;
>> 29   31      0.006612        0.043552        0.0373  293     293     293     
>> 1       0       1       -360    360;
>> 31   32      0.002864        0.018862        0.0162  293     293     293     
>> 1       0       1       -360    360;
>> 37   38      0.003872        0.025500        0.0218  293     293     293     
>> 1       0       1       -360    360;
>> 71   72      0.001858        0.023121        0.0167  404     404     404     
>> 1       0       1       -360    360;
>> 16   84      0.001573        0.010362        0.0089  293     293     293     
>> 1       0       1       -360    360;
>> 84   82      0.004166        0.027443        0.0235  293     293     293     
>> 1       0       1       -360    360;
>> 23   24      0.002962        0.019509        0.0167  293     293     293     
>> 1       0       1       -360    360;
>> 37   40      0.004535        0.029871        0.0256  293     293     293     
>> 1       0       1       -360    360;
>> 75   77      0.001217        0.008014        0.0069  293     293     293     
>> 1       0       1       -360    360;
>> 46   47      0.006760        0.044523        0.0381  293     293     293     
>> 1       0       1       -360    360;
>> 71   73      0.005973        0.039342        0.0337  293     293     293     
>> 1       0       1       -360    360;
>> 49   50      0.001475        0.009714        0.0083  293     293     293     
>> 1       0       1       -360    360;
>> 81   78      0.000549        0.002420        0.0137  146     146     146     
>> 1       0       1       -360    360;
>> 78   80      0.000725        0.003010        0.0681  293     293     293     
>> 1       0       1       -360    360;
>> 63   64      0.004302        0.028333        0.0243  293     293     293     
>> 1       0       1       -360    360;
>> 78   82      0.000935        0.004305        0.0019  146     146     146     
>> 1       0       1       -360    360;
>> 77   78      0.000701        0.004614        0.0040  293     293     293     
>> 1       0       1       -360    360;
>> 16   17      0.000009        0.000017        0.0060  375     375     375     
>> 1       0       1       -360    360;
>> 23   25      0.001413        0.009309        0.0080  293     293     293     
>> 1       0       1       -360    360;
>> 25   26      0.004265        0.028090        0.0241  293     293     293     
>> 1       0       1       -360    360;
>> 47   48      0.006366        0.041933        0.0359  293     293     293     
>> 1       0       1       -360    360;
>> 13   18      0.001106        0.002159        0.1921  375     375     375     
>> 1       0       1       -360    360;
>> 13   15      0.000492        0.000960        0.0854  375     375     375     
>> 1       0       1       -360    360;
>> 28   30      0.003196        0.021047        0.0180  293     293     293     
>> 1       0       1       -360    360;
>> 30   29      0.003441        0.022666        0.0194  293     293     293     
>> 1       0       1       -360    360;
>> 37   39      0.004044        0.026633        0.0228  293     293     293     
>> 1       0       1       -360    360;
>> 39   40      0.000713        0.001562        0.1176  293     293     293     
>> 1       0       1       -360    360;
>> 18   19      0.000946        0.001847        0.1644  375     375     375     
>> 1       0       1       -360    360;
>> 74   71      0.002581        0.017000        0.0146  293     293     293     
>> 1       0       1       -360    360;
>> 75   74      0.002790        0.018376        0.0157  293     293     293     
>> 1       0       1       -360    360;
>> 69   70      0.003441        0.022666        0.0194  293     293     293     
>> 1       0       1       -360    360;
>> 57   55      0.001920        0.012291        0.0236  293     293     293     
>> 1       0       1       -360    360;
>> 20   19      0.000909        0.001775        0.1580  375     375     375     
>> 1       0       1       -360    360;
>> 21   20      0.001032        0.002015        0.1793  375     375     375     
>> 1       0       1       -360    360;
>> 60   61      0.000027        0.006133        0.0000  3750    3750    3750    
>> 1.16    0       1       -360    360;
>> 9    8       0.000075        0.011037        0.0000  2000    2000    2000    
>> 1.02    0       1       -360    360;
>> 59   58      0.000150        0.021479        0.0000  1000    1000    1000    
>> 1.06    0       1       -360    360;
>> 58   57      0.000000        0.023280        0.0000  1000    1000    1000    
>> 1.01    0       1       -360    360;
>> 6    23      0.000150        0.023263        0.0000  1000    1000    1000    
>> 0.98    0       1       -360    360;
>> 88   87      0.000150        0.023263        0.0000  1000    1000    1000    
>> 1.01    0       1       -360    360;
>> 43   44      0.000150        0.022261        0.0000  1000    1000    1000    
>> 0.9     0       1       -360    360;
>> 2    32      0.000150        0.021382        0.0000  1000    1000    1000    
>> 0.95    0       1       -360    360;
>> 4    28      0.000150        0.021382        0.0000  1000    1000    1000    
>> 0.9     0       1       -360    360;
>> 12   13      0.000150        0.023855        0.0000  1000    1000    1000    
>> 1       0       1       -360    360;
>> 45   46      0.000150        0.022261        0.0000  1000    1000    1000    
>> 0.99    0       1       -360    360;
>> 62   63      0.000150        0.023280        0.0000  1000    1000    1000    
>> 1.02    0       1       -360    360;
>> 79   78      0.000150        0.023280        0.0000  1000    1000    1000    
>> 1.1     0       1       -360    360;
>> 8    71      0.000150        0.023280        0.0000  1000    1000    1000    
>> 1       0       1       -360    360;
>> 41   37      0.000252        0.022170        0.0000  630     630     630     
>> 1       0       1       -360    360;
>> ];
>> 
>> ++++++++++++++++++++++++
>> 
>> and i got some buses relatively far from the real values
>> 
>> the real values of the voltage are attached 
>> 
>> On 21 March 2018 at 17:33, Carlos E Murillo-Sanchez 
>> <[email protected] <mailto:[email protected]>> wrote:
>> The Ybus matrix computed from the data in your file has NaN's and Inf's 
>> because branch # 69 from bus 16 to bus 17 has zero series impedance.  You 
>> must collapse buses 16 and 17 into a single bus before applying any 
>> algorithm to the system because the electrical "distance" between these two 
>> buses is zero.
>> 
>> Carlos.
>> 
>> Mohammed Alhajri wrote:
>>> i got
>>> 
>>> ++++++++++++++++++++++++++++++++
>>> 
>>> 19980               NaN
>>> 19981               NaN
>>> 19982               NaN
>>> 19983               NaN
>>> 19984               NaN
>>> 19985               NaN
>>> 19986               NaN
>>> 19987               NaN
>>> 19988               NaN
>>> 19989               NaN
>>> 19990               NaN
>>> 19991               NaN
>>> 19992               NaN
>>> 19993               NaN
>>> 19994               NaN
>>> 19995               NaN
>>> 19996               NaN
>>> 19997               NaN
>>> 19998               NaN
>>> 19999               NaN
>>> 20000               NaN
>>> Gauss-Seidel power flow did not converge in 20000 iterations.
>>> 
>>> >>>>>  Did NOT converge (47.99 seconds)  <<<<<
>>> 
>>> 
>>> On 20 March 2018 at 19:44, Ray Zimmerman <[email protected] 
>>> <mailto:[email protected]>> wrote:
>>> Unfortunately, I do not have time to work on this myself. I was just giving 
>>> a suggestion for another direction to try if you want to understand the 
>>> issue that MATPOWER is having with your case. Could you post the output 
>>> (using verbose set to 2) of runpf() when using a MATPOIWER case file that 
>>> corresponds to the solved case from the Hadi Sadat code?
>>> 
>>> And if you have any questions about the MATPOWER case format or MATPOWER 
>>> power flow options, feel free to ask.
>>> 
>>>     Ray
>>> 
>>> 
>>> 
>>>> On Mar 20, 2018, at 11:28 AM, Mohammed Alhajri <[email protected] 
>>>> <mailto:[email protected]>> wrote:
>>>> 
>>>> Ok, i have attached the case information in format of Hadi Saadat code, 
>>>> can you please try it in MATPOWER? 
>>>> 
>>>> because we have spent more than three weeks checking the format, but still 
>>>> dose not converge... 
>>>> 
>>>> Regards,,, 
>>>> 
>>>> بتاريخ ٢٠١٨/٠٣/٢٠ ٦:٢٦ م، كتب "Ray Zimmerman" <[email protected] 
>>>> <mailto:[email protected]>>:
>>>> It’s possible that the modeling is not identical or that there is some 
>>>> error in your conversion to MATPOWER format. You can check by talking the 
>>>> solved case from your other software, converting that solved case to 
>>>> MATPOWER and then trying the MATPOWER power flow. It should converge in a 
>>>> single iteration. If it does not, then you know that there is either a 
>>>> mistake somewhere or a difference in modeling.
>>>> 
>>>>    Ray
>>>> 
>>>> 
>>>>> On Mar 16, 2018, at 12:42 PM, Mohammed Alhajri < 
>>>>> <mailto:[email protected]>[email protected] <mailto:[email protected]>> 
>>>>> wrote:
>>>>> 
>>>>> i tried that but unfortunately not work 
>>>>> 
>>>>> بتاريخ ٢٠١٨/٠٣/١٦ ٨:٣٠ م، كتب "Abhyankar, Shrirang G." < 
>>>>> <mailto:[email protected]>[email protected] <mailto:[email protected]>>:
>>>>> See FAQ #5 <http://www.pserc.cornell.edu/matpower/#pfconvergence>
>>>>>  
>>>>> Thanks,
>>>>> 
>>>>> Shri
>>>>> 
>>>>> Ph: (630) 252 0219 <tel:%28630%29%20252-0219>
>>>>> www.mcs.anl.gov/~abhyshr <http://www.mcs.anl.gov/%7Eabhyshr>
>>>>>  
>>>>>  
>>>>>  
>>>>> 
>>>>> From: <[email protected] 
>>>>> <mailto:[email protected]>> on behalf of 
>>>>> Mohammed Alhajri < <mailto:[email protected]>[email protected] 
>>>>> <mailto:[email protected]>>
>>>>> Reply-To: MATPOWER discussion forum < 
>>>>> <mailto:[email protected]>[email protected] 
>>>>> <mailto:[email protected]>>
>>>>> Date: Friday, March 16, 2018 at 11:26 AM
>>>>> To: MATPOWER discussion forum < 
>>>>> <mailto:[email protected]>[email protected] 
>>>>> <mailto:[email protected]>>
>>>>> Subject: Re: Power Flow in Matpower
>>>>> 
>>>>>  
>>>>> any answer to this question?
>>>>> 
>>>>>  
>>>>> بتاريخ ٢٠١٨/٠٢/٢٥ ٧:١٨ م، كتب "Mohammed Alhajri" < 
>>>>> <mailto:[email protected]>[email protected] <mailto:[email protected]>>:
>>>>> 
>>>>> Hello All,
>>>>> 
>>>>>  
>>>>> I did the power flow for a 89-bus network and it converges using Hadi 
>>>>> Sadat code after 17080 iterations. The accuracy was 1e-8 and the method 
>>>>> is Gauss-Seidel Method.
>>>>> 
>>>>>  
>>>>> But when I did the power flow using matpower it does not converge! I 
>>>>> tried to increase the maximum iteration, I put it 100000, and still did 
>>>>> not cnvarge!
>>>>> 
>>>>>  
>>>>> I have attached the data according to Hadi Sadat Code, can any one try to 
>>>>> do the power flow using matpower?
>>>>> 
>>>>>  
>>>> 
>>> 
>>> 
>> 
>> 
>> <Voltage Profile.xlsx>
> 
> 

Reply via email to