Hi - I am still trying to hand calculate the flow into branch 2 from bus 1 to 
bus 2.  I can’t get my results to match MATPOWER.

 

I get Q into the banks from bus 1 of,

                Bank #1:    24.00 MVAR

                Bank #2:  -25.02 MVAr

 

Attached is my short calculation and the .m file.  Is there a way to have 
MATPOWER barf out the YBUS matrix?

 

                                                                                
                                                                                
 

================================================================================

|     Bus Data                                                                 |

================================================================================

Bus      Voltage          Generation             Load

  #   Mag(pu) Ang(deg)   P (MW)   Q (MVAr)   P (MW)   Q (MVAr)

----- ------- --------  --------  --------  --------  --------

    1  1.000    0.000*     0.00      1.14       -         -

    2  0.976    0.000       -         -         -         -

                        --------  --------  --------  --------

               Total:      0.00      1.14      0.00      0.00

 

================================================================================

|     Branch Data                                                              |

================================================================================

Brnch   From   To    From Bus Injection   To Bus Injection     Loss (I^2 * Z)

  #     Bus    Bus    P (MW)   Q (MVAr)   P (MW)   Q (MVAr)   P (MW)   Q (MVAr)

-----  -----  -----  --------  --------  --------  --------  --------  --------

   1      1      2      0.00     23.91      0.00    -23.34    -0.000      0.57

   2      1      2      0.00    -22.77      0.00     23.34    -0.000      0.57

                                                             --------  --------

                                                    Total:     0.000      1.14

 

Best regards,

russ

function mpc = circulating
% This example is to show circulating MVAR losses in 2 parallel banks
% with different turns ratios (no load connected)
%   
% 161kV Bus 1 is infinite and is 1 pu and zero degrees
% 13.8kV Bus 2 has no load connected
% Transformer 1 between bus 1 & 2 is j0.1 pu (100MVA, 161kV base) and turns 
ratio matches ratio of voltage bases (1.0)
%  161kV:13.8kV
% Transformer 2 between bus 1 & 2 is j0.1 pu (100MVA, 161kV base) and turns 
ratio is 1.05 of voltage base ratio
%  161kV:13.14kV (bank 1)
%
%
% The voltage difference is (13.8kV – 13.14kV)/13.8kV = 0.0478 pu which is the 
driving voltage for the circulating current.  
% The circulating current will be 0.0478/0.2pu = 0.239pu A.  This circulating 
current will produce a var drop of 
% Q = (0.239)(0.239) x (0.2) = 0.01144 pu.  This is 1.14MVAr.
% - - - - - - - - - - -
%
\%% MATPOWER Case Format : Version 2
mpc.version = '2';

\%%-----  Power Flow Data  -----\%%
\%% system MVA base
mpc.baseMVA = 100;

\%% Vm under mpc.gen sets the slack bus (1) voltage magnitude
\%% Va under mpc.bus sets the slack bus (1) voltage angle 
\%% 
%       bus_i   type      Pd       Qd      Gs       Bs  area      Vm      Va    
  baseKV        zone     Vmax      Vmin
mpc.bus = [
      1    3     0      0     0      0     1     1     0       161     1      1 
      1;
      2    1     0      0     0      0     1     1     0      13.8     1      0 
      0;
];

\%% generator data
%       bus        Pg       Qg    Qmax    Qmin            Vg    mBase   status  
Pmax    Pmin    Pc1     Pc2     Qc1min  Qc1max  Qc2min  Qc2max  ramp_agc        
ramp_10 ramp_30 ramp_q  apf   ?
mpc.gen = [
    1       0       0          0       0     1.0      0       1    0     0    0 
  0          0       0       0       0         0        0       0      0    0   
0;
];

\%% branch data
%       fbus    tbus      r           x     b      rateA        rateB   rateC   
 ratio   angle   status   angmin          angmax
mpc.branch = [
     1     2    0      .1     0        0      0     0      0       0        1   
     0         0;
% the second branch is via transformer that has 1.05 higher turns ratio as 
compared to 161/13.8
     1     2    0      .1     0        0      0     0   1.05023       0        
1        0         0;
];


Attachment: power.pdf
Description: Adobe PDF document

Reply via email to