Carlos – thank you. Very helpful.
The YBus I get for my case is below. I expected Y(1,1) to equal the of this sum: (1/j0.1) + (1/j0.09522) + (1/-j1.991) = j 19.9997 (negative sign is per coder preference). Is attached (page 1) not how MATPOWER would modify the bank #2 impedances before creating YBUS? Yb = Compressed Column Sparse (rows = 2, cols = 2, nnz = 4 [100%]) (1, 1) -> 0 - 19.0663i (2, 1) -> 0 + 19.5217i (1, 2) -> 0 + 19.5217i (2, 2) -> 0 - 20i Best regards, russ From: [email protected] [mailto:[email protected]] On Behalf Of Carlos E Murillo-Sanchez Sent: Wednesday, December 16, 2020 4:12 PM To: MATPOWER discussion forum Subject: Re: circulating current (MVAR loss) Russ Patterson wrote: Hi - I am still trying to hand calculate the flow into branch 2 from bus 1 to bus 2. I can’t get my results to match MATPOWER. I get Q into the banks from bus 1 of, Bank #1: 24.00 MVAR Bank #2: -25.02 MVAr Attached is my short calculation and the .m file. Is there a way to have MATPOWER barf out the YBUS matrix? >> help makeYbus If buses are numbered consecutively starting from 1 in the bus table (see ext2int if not), simply type: >> mpc = loadcase('mycase'); >> [Yb, Yf, Yt] = makeYbus(mpc) To get all the relevant current injections in the solved case, simply do >> mpc = runpf(mpc); >> define_constants; >> V = mpc.bus(:, VM) .* exp(1i * mpc.bus(:, VA)*pi/180); >> Ibus = Yb * V >> Ifrom = Yf * V; >> Ito = Yt * V; >From there, compute power injections as >> Sbusinj = V .* conj(Yb * V); >> Sfrominj = V(mpc.branch(:, F_BUS)) .* conj(Yf * V); >> Stoinj = V(mpc.branch(:, T_BUS)) .* conj(Yt * V); carlos.
power.pdf
Description: Adobe PDF document
