First four bonus theorems proved. Proofs are quite short.

${
  $d x y z a B $.  $d x y z a .o. $.  $d M a $.
  mendpadmbi.a $e |- B = ( Base ` M ) $.
  mendpadmbi.b $e |- .o. = ( +g ` M ) $.
  mendpadmbi.c $e |- B =/= (/) $.
  mendpadmbi.d $e |- M e. Mgm $.

  ${
    $d E x a $.
    $( Lemma for mendpadmbi. Mendelsohn-Padmanabhan identity implies that ` 
x .o. x ` is the group identity for all ` x ` . $)
    mendpadmbilem1.a $e |- E = ( 0g ` M ) $.
    mendpadmbilem1 $p |- ( A. x e. B A. y e. B A. z e. B ( ( x .o. y ) .o. 
( x .o. ( z .o. y ) ) ) = z -> A. x e. B ( x .o. x ) = E ) $=
      ( va cv co wceq wral wcel a1i weq cabl c0g cfv c0 wne cmgm oveq12d 
eqeq1d
      oveq1 2ralbidv cbvralvw biimpi mendpadm id eqtr4di ralimi simpl2im 
sylib
      ) 
ANZBNZGOZUSCNZUTGOZGOZGOZVBPZCDQBDQZADQZMNZVIGOZEPZMDQZUSUSGOZEPZADQVHF
      
UARVJFUBUCZPZMDQVLVHMBCDFGHIDUDUEVHJSFUFRVHKSVHVIUTGOZVIVCGOZGOZVBPZCDQBD
      
QZMDQVGWAAMDAMTZVFVTBCDDWBVEVSVBWBVAVQVDVRGUSVIUTGUIUSVIVCGUIUGUHUJUKULUM
      VPVKMDVPVJVOEVPUNLUOUPUQVKVNMADMATZVJVMEWCVIUSVIUSGWCUNZWDUGUHUKUR $.

    $( Lemma for mendpadmbi. Mendelsohn-Padmanabhan identity implies that ` 
x ` to the power of ` 2 ` is the group identity for all ` x ` . $)
    mendpadmbilem2.a $e |- .x. = ( .g ` M ) $.
    mendpadmbilem2 $p |- ( A. x e. B A. y e. B A. z e. B ( ( x .o. y ) .o. 
( x .o. ( z .o. y ) ) ) = z -> A. x e. B ( 2 .x. x ) = E ) $=
      ( cv co wceq wral c2 mendpadmbilem1 wcel mulg2 eqeq2 syl5ibcom ralimia
      syl ) 
AOZBOZHPUGCOZUHHPHPHPUIQCDRBDRADRUGUGHPZFQZADRSUGEPZFQZADRABCDFGHIJ
      KLMTUKUMADUGDUAULUJQUKUMDHEGUGINJUBUJFULUCUDUEUF $.
  $}

  $( Lemma for mendpadmbi. Mendelsohn-Padmanabhan identity implies that the 
group exponent is at most 2. $)
  mendpadmbilem3 $p |- ( A. x e. B A. y e. B A. z e. B ( ( x .o. y ) .o. ( 
x .o. ( z .o. y ) ) ) = z -> ( gEx ` M ) e. ( 1 ... 2 ) ) $=
    ( va cmgm wcel c2 cv co wceq wral cfv eqid cn cmg c0g cgex c1 cfz 2nn 
oveq1
    weq oveq12d eqeq1d 2ralbidv cbvralvw mendpadmbilem2 sylbi gexlem2 
mp3an12i
    ) 
ELMNUAMAOZBOZFPZURCOZUSFPZFPZFPZVAQZCDRBDRZADRZNKOZEUBSZPEUCSZQKDRZEUDSZU
    
ENUFPMJUGVGVHUSFPZVHVBFPZFPZVAQZCDRBDRZKDRVKVFVQAKDAKUIZVEVPBCDDVRVDVOVAVRU
    
TVMVCVNFURVHUSFUHURVHVBFUHUJUKULUMKBCDVIVJEFGHIJVJTZVITZUNUOKVIVLENLDVJGVLT
    VTVSUPUQ $.

  $( Lemma for mendpadmbi. Mendelsohn-Padmanabhan identity implies that the 
group exponent divides 2. $)
  mendpadmbilem4 $p |- ( A. x e. B A. y e. B A. z e. B ( ( x .o. y ) .o. ( 
x .o. ( z .o. y ) ) ) = z -> ( gEx ` M ) || 2 ) $=
    ( cv co wceq wral c1 c2 wcel cdvds wbr id cgex cfv cfz mendpadmbilem3 
elpri
    wo cpr fz12pr eleq2s cz 2z 1dvds ax-mp eqbrtrdi z2even jaoi 3syl ) 
AKZBKZFL
    
URCKZUSFLFLFLUTMCDNBDNADNEUAUBZOPUCLZQVAOMZVAPMZUFZVAPRSZABCDEFGHIJUDVEVAOP
    UGVBVAOPUEUHUIVCVFVDVCVAOPRVCTPUJQOPRSUKPULUMUNVDVAPPRVDTUOUNUPUQ $.
$}


-- 
You received this message because you are subscribed to the Google Groups 
"Metamath" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to [email protected].
To view this discussion visit 
https://groups.google.com/d/msgid/metamath/55fd913f-e0f0-4342-941c-a154d03f7e44n%40googlegroups.com.

Reply via email to