Last theorem proved:

${
  $d x y z a b c B $.  $d x y z a b c .o. $.  $d M a b c $.
  mendpadmbi.a $e |- B = ( Base ` M ) $.
  mendpadmbi.b $e |- .o. = ( +g ` M ) $.
  mendpadmbi.c $e |- B =/= (/) $.
  mendpadmbi.d $e |- M e. Mgm $.
  $( Boolean groups are characterized by an identiy of N.S. Mendelsohn and 
R. Padmanabhan. $)
  mendpadmbi $p |- ( A. x e. B A. y e. B A. z e. B ( ( x .o. y ) .o. ( x 
.o. ( z .o. y ) ) ) = z <-> ( M e. Abel /\ ( gEx ` M ) || 2 ) ) $=
    ( va vb vc cv co wceq wral wcel oveq1 oveq2d cabl cgex cfv c2 cdvds wbr 
c0g
    wa wne a1i cmgm weq oveq12d eqeq1d 2ralbidv cbvralvw biimpi mendpadm 
simpld
    c0 mendpadmbilem4 jca cgrp wi simpl ablgrp grpass 3exp2 3syl 
mendpadmbilem5
    imp41 ad3antrrr mgmcl mp3an1 oveq2 eqeq12d rspc2v sylan adantlll mpd 
ablcom
    id ad5ant145 3eqtr3rd ralrimiva cbvral3vw sylib impbii ) 
ANZBNZFOZWICNZWJFO
    
ZFOZFOZWLPZCDQBDQZADQZEUARZEUBUCUDUEUFZUHZWRWSWTWRWSKNZXBFOEUGUCPKDQWRKBCDE
    
FGHDUTUIWRIUJEUKRZWRJUJWRXBWJFOZXBWMFOZFOZWLPZCDQBDQZKDQWQXHAKDAKULZWPXGBCD
    
DXIWOXFWLXIWKXDWNXEFWIXBWJFSWIXBWMFSUMUNUOUPUQURUSABCDEFGHIJVAVBXAXBLNZFOZX
    
BMNZXJFOZFOZFOZXLPZMDQZLDQZKDQWRXAXRKDXAXBDRZUHZXQLDXTXJDRZUHZXPMDYBXLDRZUH
    
ZXKXKXLFOZFOZXKXBXJXLFOZFOZFOXLXOYDYEYHXKFXAXSYAYCYEYHPZXAWSEVCRZXSYAYCYIVD
    
VDVDWSWTVEEVFYJXSYAYCYIDFEXBXJXLGHVGVHVIVKTYDWIWKFOZWJPZBDQADQZYFXLPZXAYMXS
    
YAYCABDEFGHVJVLXSYAYCYMYNVDZXAXSYAUHXKDRZYCYOXCXSYAYPJDEXBXJFGHVMVNYLYNXKXK
    
WJFOZFOZWJPABXKXLDDWIXKPZYKYRWJYSWIXKWKYQFYSWBWIXKWJFSUMUNBMULZYRYFWJXLYTYQ
    
YEXKFWJXLXKFVOTYTWBVPVQVRVSVTYDYHXNXKFYDYGXMXBFWSYAYCYGXMPWTXSDFEXJXLGHWAWC
    
TTWDWEWEWEXPWPWIXJFOZWIXMFOZFOZXLPWKWIXLWJFOZFOZFOZXLPKLMABCDDDKAULZXOUUCXL
    
UUGXKUUAXNUUBFXBWIXJFSXBWIXMFSUMUNLBULZUUCUUFXLUUHUUAWKUUBUUEFXJWJWIFVOUUHX
    
MUUDWIFXJWJXLFVOTUMUNMCULZUUFWOXLWLUUIUUEWNWKFUUIUUDWMWIFXLWLWJFSTTUUIWBVPW
    FWGWH $.
$}

I guess this is the end. Nice challenge, I enjoyed it.

-- 
You received this message because you are subscribed to the Google Groups 
"Metamath" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to [email protected].
To view this discussion visit 
https://groups.google.com/d/msgid/metamath/27f7b052-78a8-4b02-b269-0e817bb9bb65n%40googlegroups.com.

Reply via email to