Part 2 is, of course, making a version of this which is suitable for set.mm.

On Sun, Dec 15, 2024 at 1:16 AM Gino Giotto <[email protected]>
wrote:

> Last theorem proved:
>
> ${
>   $d x y z a b c B $.  $d x y z a b c .o. $.  $d M a b c $.
>   mendpadmbi.a $e |- B = ( Base ` M ) $.
>   mendpadmbi.b $e |- .o. = ( +g ` M ) $.
>   mendpadmbi.c $e |- B =/= (/) $.
>   mendpadmbi.d $e |- M e. Mgm $.
>   $( Boolean groups are characterized by an identiy of N.S. Mendelsohn and
> R. Padmanabhan. $)
>   mendpadmbi $p |- ( A. x e. B A. y e. B A. z e. B ( ( x .o. y ) .o. ( x
> .o. ( z .o. y ) ) ) = z <-> ( M e. Abel /\ ( gEx ` M ) || 2 ) ) $=
>     ( va vb vc cv co wceq wral wcel oveq1 oveq2d cabl cgex cfv c2 cdvds
> wbr c0g
>     wa wne a1i cmgm weq oveq12d eqeq1d 2ralbidv cbvralvw biimpi mendpadm
> simpld
>     c0 mendpadmbilem4 jca cgrp wi simpl ablgrp grpass 3exp2 3syl
> mendpadmbilem5
>     imp41 ad3antrrr mgmcl mp3an1 oveq2 eqeq12d rspc2v sylan adantlll mpd
> ablcom
>     id ad5ant145 3eqtr3rd ralrimiva cbvral3vw sylib impbii )
> ANZBNZFOZWICNZWJFO
>
> ZFOZFOZWLPZCDQBDQZADQZEUARZEUBUCUDUEUFZUHZWRWSWTWRWSKNZXBFOEUGUCPKDQWRKBCDE
>
> FGHDUTUIWRIUJEUKRZWRJUJWRXBWJFOZXBWMFOZFOZWLPZCDQBDQZKDQWQXHAKDAKULZWPXGBCD
>
> DXIWOXFWLXIWKXDWNXEFWIXBWJFSWIXBWMFSUMUNUOUPUQURUSABCDEFGHIJVAVBXAXBLNZFOZX
>
> BMNZXJFOZFOZFOZXLPZMDQZLDQZKDQWRXAXRKDXAXBDRZUHZXQLDXTXJDRZUHZXPMDYBXLDRZUH
>
> ZXKXKXLFOZFOZXKXBXJXLFOZFOZFOXLXOYDYEYHXKFXAXSYAYCYEYHPZXAWSEVCRZXSYAYCYIVD
>
> VDVDWSWTVEEVFYJXSYAYCYIDFEXBXJXLGHVGVHVIVKTYDWIWKFOZWJPZBDQADQZYFXLPZXAYMXS
>
> YAYCABDEFGHVJVLXSYAYCYMYNVDZXAXSYAUHXKDRZYCYOXCXSYAYPJDEXBXJFGHVMVNYLYNXKXK
>
> WJFOZFOZWJPABXKXLDDWIXKPZYKYRWJYSWIXKWKYQFYSWBWIXKWJFSUMUNBMULZYRYFWJXLYTYQ
>
> YEXKFWJXLXKFVOTYTWBVPVQVRVSVTYDYHXNXKFYDYGXMXBFWSYAYCYGXMPWTXSDFEXJXLGHWAWC
>
> TTWDWEWEWEXPWPWIXJFOZWIXMFOZFOZXLPWKWIXLWJFOZFOZFOZXLPKLMABCDDDKAULZXOUUCXL
>
> UUGXKUUAXNUUBFXBWIXJFSXBWIXMFSUMUNLBULZUUCUUFXLUUHUUAWKUUBUUEFXJWJWIFVOUUHX
>
> MUUDWIFXJWJXLFVOTUMUNMCULZUUFWOXLWLUUIUUEWNWKFUUIUUDWMWIFXLWLWJFSTTUUIWBVPW
>     FWGWH $.
> $}
>
> I guess this is the end. Nice challenge, I enjoyed it.
>
> --
> You received this message because you are subscribed to the Google Groups
> "Metamath" group.
> To unsubscribe from this group and stop receiving emails from it, send an
> email to [email protected].
> To view this discussion visit
> https://groups.google.com/d/msgid/metamath/27f7b052-78a8-4b02-b269-0e817bb9bb65n%40googlegroups.com
> <https://groups.google.com/d/msgid/metamath/27f7b052-78a8-4b02-b269-0e817bb9bb65n%40googlegroups.com?utm_medium=email&utm_source=footer>
> .
>

-- 
You received this message because you are subscribed to the Google Groups 
"Metamath" group.
To unsubscribe from this group and stop receiving emails from it, send an email 
to [email protected].
To view this discussion visit 
https://groups.google.com/d/msgid/metamath/CAFXXJSuxea7otER-7QSqtqU-arnLcyjFfrheR12CVe91YtAtgw%40mail.gmail.com.

Reply via email to