De nada.
Fiquei curioso quanto à tua solução por Ptolomeu.
Qual é o ponto P?
Valeu, Cleuber.

--- Em qui, 30/4/09, Cleuber Eduardo <cleubersa...@yahoo.com.br> escreveu:

De: Cleuber Eduardo <cleubersa...@yahoo.com.br>
Assunto: Res: [obm-l] problema interessante!!!
Para: obm-l@mat.puc-rio.br
Cc: cleubersa...@yahoo.com.br
Data: Quinta-feira, 30 de Abril de 2009, 10:18






Valeu Márcio!!. Quando eu peguei esse problema a princípio  eu tratei o 
problema de uma forma parecida com a tua. Mas ontem eu percebi que se 
construíssemos  um triangulo equilátero auxiliar ACE e depois  ptlolomeu no 
quadriátero APCE e BPCD. E so no final usa-se a lei dos cossenos pra terminar. 
 
Obrigado!!!!





De: Márcio Pinheiro <profmar...@yahoo.com.br>
Para: obm-l@mat.puc-rio.br
Enviadas: Quinta-feira, 30 de Abril de 2009 8:39:51
Assunto: Re: [obm-l] problema interessante!!!






A idéia inicial pode ser expressar AD em função de AB = c e de AC = b (essa é a 
parte realmente enfadonha). Um caminho (não acessível a quem ainda não tem 
conhecimentos razoáveis de números complexos) é adotar um plano de Argand-Gauss 
em que A é a origem e os eixos contêm os catetos. Em um tal plano, sejam A (0, 
0), B (0, c) e C (b, 0), por exemplo. O vetor CB pode ser obtido por meio de 
uma rotação do vetor CD de pi/3 em torno de C. Lembrando que o vetor PQ, com P 
(m, n) e Q (p, q), pode ser associado biunivocamente tanto a P - Q (m - p, n - 
q) quanto ao complexo (m - p) + (n - q)i, i^2 = -1, conclui-se que:
(vetor CD)*(cospi/3 + isenpi/3) = (vetor CB), o que equivale a [(x - b) + 
iy]*[(1/2) + i(sqrt3)/2] = - b + ci, sendo D (x, y).
Da igualdade das partes real e imaginária, impõe-se que x = (b + csqrt3)/2 e y 
= (c + bsqrt3)/2 (espero não ter errado as contas, feitas "de cabeça" :D).
Finalmente, obtém-se que AD^2 = b^2 + c^2 + bcsqrt3, através da distância entre 
os pontos A e D. Supondo que b e c sejam racionais, conclui-se que b^2, c^2 e 
bc também o 
são. Logo AD^2 seria irracional. Mas, caso AD fosse racional, AD^2 deveria 
acompanhar essa racionalidade. Por conseguinte, AD não pode ser, também, 
racional.
É possível obter AD por caminhos sintéticos, usando a Lei dos Cossenos, por 
exemplo, nos triângulos ABD e ACD, juntamente com mais alguma trigonometria. 
Entretanto, aí sim a solução fica bem mais bizarra...
Espero ter contribuído.
Márcio Pinheiro.

--- Em qua, 29/4/09, Cleuber Eduardo <cleubersa...@yahoo.com.br> escreveu:

De: Cleuber Eduardo <cleubersa...@yahoo.com.br>
Assunto: [obm-l] problema interessante!!!
Para: obm-l@mat.puc-rio.br
Cc: cleubersa...@yahoo.com.br
Data: Quarta-feira, 29 de Abril de 2009, 16:06






Bom, amigos da lista estou pensando nesse problema a alguns dias, no entanto a 
forma como o fiz é bastante enfadonha.!!!! 
1.Let ABC be a right triangle (∠A = 90◦). On the hypotenuse BC construct
in the exterior the equilateral triangle BCD. Prove that the lengths of the 
segments AB,
AC, and AD cannot all be rational.donha. Obrigado desde já.


Veja quais são os assuntos do momento no Yahoo! + Buscados: Top 10 - 
Celebridades - Música - Esportes


Veja quais são os assuntos do momento no Yahoo! + Buscados: Top 10 - 
Celebridades - Música - Esportes


Veja quais são os assuntos do momento no Yahoo! + Buscados: Top 10 - 
Celebridades - Música - Esportes


      Veja quais são os assuntos do momento no Yahoo! +Buscados
http://br.maisbuscados.yahoo.com

Responder a