You should look at f K and g K, see how they are related to K.  Pay attention 
to the diagonals.  Kip

Sent from my iPad


On Jan 16, 2013, at 2:45 AM, "Linda Alvord" <lindaalv...@verizon.net> wrote:

> Here's another slant on Raul's solution:
> 
> 
> 
>  ishermitian=: -:[:+|:
> 
>   J=:hermy=. (([: <: [: +: 0 ?@$~ ,~) j. [: <: [: +: 0 ?@$~ ,~) 3  
> 
>   UT=:(i.3)<:/i.3
> 
>   ]K=:UT*J
> 
> _0.763071j_0.749387  0.904219j0.649481 _0.284142j_0.657158
>                  0 _0.500527j0.695882 _0.927555j_0.590524
>                  0                  0 _0.0310291j0.525098
> 
>   f=: (% 1 + =@i.@#)@:+ +@|:  NB. Raul
> 
>   g=:[:(% (1 + [: = [: i. #)) (+ [:+ |:) NB. Linda
> 
>   (f K)-:g K
> 
> 1
> 
>   5!:4 <'f'
> 
>              -- %                 
>              │   -- 1             
>         -----+   +- +             
>         │    L---+           -- = 
>  -- @: -+        │     -- @ -+- i.
>  │      │        L- @ -+- #       
>  │      L- +                      
> --+                                
>  │      -- +                      
>  L- @ --+- |:                     
> 
>   5!:4 <'g'
> 
>  -- [:                   
>  │    -- %               
>  │    │   -- 1           
>  +----+   +- +           
>  │    L---+    -- [:     
> --+        │    +- =      
>  │        L----+    -- [:
>  │             L----+- i.
>  │                  L- # 
>  │    -- +               
>  L----+   -- [:          
>       L---+- +           
>           L- |:          
> 
> 
> 
> Linda  
> 
> 
> 
> -----Original Message-----
> From: programming-boun...@forums.jsoftware.com
> [mailto:programming-boun...@forums.jsoftware.com] On Behalf Of Linda Alvord
> Sent: Wednesday, January 16, 2013 1:56 AM
> To: programm...@jsoftware.com
> Subject: Re: [Jprogramming] Hermitian from triangular
> 
> 
> 
> I sort of wondered about that word "triangular" but no one else seemed to
> worry about it.  I should have noticed that A was a triangular matrix when K
> showed up
> 
> 
> 
>    ishermitian=: -:[:+|:
> 
>   ]J=:hermy=. (([: <: [: +: 0 ?@$~ ,~) j. [: <: [: +: 0 ?@$~ ,~) 3
> 
>  0.82045j_0.713947 _0.216061j_0.616151 _0.560927j_0.861101
> 
> 0.101964j_0.151381  0.350483j_0.440496    0.58375j0.501941
> 
> 0.00170859j0.457596   0.637767j0.161541  0.333754j_0.975332
> 
>   ]UT=:(i.3)<:/i.3
> 
> 1 1 1
> 
> 0 1 1
> 
> 0 0 1
> 
>   ]K=:UT*J
> 
> 0.82045j_0.713947 _0.216061j_0.616151 _0.560927j_0.861101
> 
>                0  0.350483j_0.440496    0.58375j0.501941
> 
>                0                   0  0.333754j_0.975332
> 
>   hft =: + +@|:@(- ] *  <mailto:=@i.@#> =@i.@#)  NB.  Kip
> 
>   ishermitian hft K
> 
> 0
> 
>   hft=: (+ +@|: * > <mailto:/~@i.@#> /~@i.@#) NB. Ai
> 
>   ishermitian hft K
> 
> 0
> 
>   hft=: (% 1 +  <mailto:=@i.@#)@> =@i.@#)@:+ +@|:  NB. Raul
> 
>   ishermitian hft K
> 
> 1
> 
>   hft=:((23 b.&.(a.&i.)&.(2&(3!:5))&.+. +@|:)) NB. Henry
> 
>   ishermitian hft K
> 
> 0
> 
>   hft=: 0&=`(,: +@|:)}  
> 
>   ishermitian hft K
> 
> 0
> 
> Does K sufficient to test these programs, Kip?
> 
> 
> 
> Linda
> 
> 
> 
> 
> 
> -----Original Message-----
> 
> From:  <mailto:programming-boun...@forums.jsoftware.com>
> programming-boun...@forums.jsoftware.com
> 
> [ <mailto:programming-boun...@forums.jsoftware.com>
> mailto:programming-boun...@forums.jsoftware.com] On Behalf Of km
> 
> Sent: Wednesday, January 16, 2013 1:31 AM
> 
> To:  <mailto:programm...@jsoftware.com> programm...@jsoftware.com
> 
> Subject: Re: [Jprogramming] Hermitian from triangular
> 
> 
> 
> Linda and Devon, the assignment was to turn a triangular matrix that has a
> real diagonal into a Hermitian matrix.  A triangular matrix can be "upper
> triangular" like
> 
> 
> 
>   1  2  3
> 
>   0  4  5
> 
>   0  0  6
> 
> 
> 
> or "lower triangular" like
> 
> 
> 
>   1  0  0
> 
>   2  3  0
> 
>   4  5  6
> 
> 
> 
> The "diagonal" is always the one running from the upper left corner to the
> lower right corner, containing 1 4 6 in the first example and 1 3 6 in the
> second example.  The following upper triangular matrix has a real diagonal
> but some numbers off the diagonal are not real.
> 
> 
> 
>   1  _2j3  0
> 
>   0  _4     5j_6
> 
>   0    0     7
> 
> 
> 
> Although the numbers in my examples have patterns, in general the numbers in
> a triangular matrix need have no pattern except that either numbers below
> the diagonal are all 0's or numbers above the diagonal are all 0's.
> 
> 
> 
> Kip Murray
> 
> 
> 
> Sent from my iPad
> 
> 
> 
> 
> 
> On Jan 15, 2013, at 11:19 PM, Devon McCormick < <mailto:devon...@gmail.com>
> devon...@gmail.com> wrote:
> 
> 
> 
>> Your results agree with mine - of the three versions of "hft" only
> 
>> Raul's appears to turn an arbitrary random, complex, square matrix
> 
>> into one that passes "ishermitian".
> 
> 
> 
>> On Tue, Jan 15, 2013 at 11:05 PM, Linda Alvord
> 
> < <mailto:lindaalv...@verizon.net> lindaalv...@verizon.net>wrote:
> 
> 
>>> Have I gotten all the definitions correct?  The only one that
> 
>>> consistently works on a random matrix provided by Kip was provided by
> 
>>> Raul
> 
> 
>>>   ishermitian =: -: +@|:
> 
>>>  ]K=:hermy=. (([: <: [: +: 0 ?@$~ ,~) j. [: <: [: +: 0 ?@$~ ,~) 3
> 
>>> 0.681691j_0.530679    0.105724j0.221189  0.140368j_0.982508
> 
>>> _0.469356j_0.623093     0.71661j0.893344  _0.125895j0.532656
> 
>>> _0.882974j_0.727597 0.0632899j_0.0448332 _0.975941j_0.730788
> 
>>>  hft =: + +@|:@(- ] *  <mailto:=@i.@#> =@i.@#)  NB.  Kip
> 
>>>  ishermitian hft K
> 
>>> 0
> 
>>>  hft=: (+ +@|: * > <mailto:/~@i.@#> /~@i.@#) NB. Ai
> 
>>>  ishermitian hft K
> 
>>> 0
> 
>>>  hft=: (% 1 +  <mailto:=@i.@#)@> =@i.@#)@:+ +@|:  NB. Raul
> 
>>>  ishermitian hft K
> 
>>> 1
> 
>>>  hft=:((23 b.&.(a.&i.)&.(2&(3!:5))&.+. +@|:)) NB. Henry
> 
>>>  ishermitian hft K
> 
>>> 0
> 
>>>  hft=: 0&=`(,: +@|:)}
> 
>>>  ishermitian hft K
> 
>>> 0
> 
> 
>>> Linda
> 
> 
> 
>>> -----Original Message-----
> 
>>> From:  <mailto:programming-boun...@forums.jsoftware.com>
> programming-boun...@forums.jsoftware.com
> 
>>> [ <mailto:programming-boun...@forums.jsoftware.com>
> mailto:programming-boun...@forums.jsoftware.com] On Behalf Of Henry 
> 
>>> Rich
> 
>>> Sent: Tuesday, January 15, 2013 6:21 PM
> 
>>> To:  <mailto:programm...@jsoftware.com> programm...@jsoftware.com
> 
>>> Subject: Re: [Jprogramming] Hermitian from triangular
> 
> 
>>> Nah, that's not beyond impish.  The devilish solution is to take the
> 
>>> bitwise OR of the matrix with its conjugate transpose (but that's
> 
>>> easier in assembler language than in J:
> 
>>> (23 b.&.(a.&i.)&.(2&(3!:5))&.+. +@|:)) ).  And you need to be sure
> 
>>> that the zeros on the lower diagonal and below are true zeros!
> 
> 
>>> Henry Rich
> 
> 
>>> On 1/15/2013 6:03 PM, km wrote:
> 
>>>> Oh, boy!  (v1`v2) } y <--> (v1 y) } (v2 y)
> 
> 
>>>> Brief and devilish, take care for your soul, Henry!
> 
> 
>>>> --Kip
> 
> 
>>>> Sent from my iPad
> 
> 
> 
>>>> On Jan 15, 2013, at 3:39 PM, Henry Rich < <mailto:henryhr...@nc.rr.com>
> henryhr...@nc.rr.com> wrote:
> 
> 
>>>>>  hft =: 0&=`(,: +@|:)}
> 
> 
>>>>> Henry Rich
> 
> 
>>>>> On 1/15/2013 5:25 AM, km wrote:
> 
>>>>>> This is an easy one.  A Hermitian matrix matches its conjugate
> 
>>> transpose.  Write a verb hft that creates a Hermitian matrix from a
> 
>>> triangular one that has a real diagonal.
> 
> 
>>>>>>    ishermitian =: -: +@|:
> 
>>>>>>    ]A =: 2 2 $ 1 2j3 0 4
> 
>>>>>> 1 2j3
> 
>>>>>> 0   4
> 
>>>>>>    ]B =: hft A
> 
>>>>>>    1 2j3
> 
>>>>>> 2j_3   4
> 
>>>>>>    ishermitian A
> 
>>>>>> 0
> 
>>>>>>    ishermitian B
> 
>>>>>> 1
> 
> 
>>>>>> Kip Murray
> 
> 
>>>>>> Sent from my iPad
> 
>>>>>> ------------------------------------------------------------------
> 
>>>>>> --
> 
>>>>>> -- For information about J forums see
> 
>>>>>> <http://www.jsoftware.com/forums.htm>
> http://www.jsoftware.com/forums.htm
> 
>>>>> -------------------------------------------------------------------
> 
>>>>> --
> 
>>>>> - For information about J forums see
> 
>>>>> <http://www.jsoftware.com/forums.htm>
> http://www.jsoftware.com/forums.htm
> 
>>>> --------------------------------------------------------------------
> 
>>>> -- For information about J forums see
> 
>>>> <http://www.jsoftware.com/forums.htm>
> http://www.jsoftware.com/forums.htm
> 
>>> ---------------------------------------------------------------------
> 
>>> - For information about J forums see
> 
>>> <http://www.jsoftware.com/forums.htm>
> http://www.jsoftware.com/forums.htm
> 
> 
>>> ---------------------------------------------------------------------
> 
>>> - For information about J forums see
> 
>>> <http://www.jsoftware.com/forums.htm>
> http://www.jsoftware.com/forums.htm
> 
> 
> 
> 
>> --
> 
>> Devon McCormick, CFA
> 
>> ^me^ at acm.
> 
>> org is my
> 
>> preferred e-mail
> 
>> ----------------------------------------------------------------------
> 
>> For information about J forums see  <http://www.jsoftware.com/forums.htm>
> http://www.jsoftware.com/forums.htm
> 
> ----------------------------------------------------------------------
> 
> For information about J forums see  <http://www.jsoftware.com/forums.htm>
> http://www.jsoftware.com/forums.htm
> 
> 
> 
> ----------------------------------------------------------------------
> 
> For information about J forums see  <http://www.jsoftware.com/forums.htm>
> http://www.jsoftware.com/forums.htm
> 
> ----------------------------------------------------------------------
> For information about J forums see http://www.jsoftware.com/forums.htm
----------------------------------------------------------------------
For information about J forums see http://www.jsoftware.com/forums.htm

Reply via email to