Your results agree with mine - of the three versions of "hft" only Raul's
appears to turn an arbitrary random, complex, square matrix into one that
passes "ishermitian".


On Tue, Jan 15, 2013 at 11:05 PM, Linda Alvord <lindaalv...@verizon.net>wrote:

> Have I gotten all the definitions correct?  The only one that consistently
> works on a random matrix provided by Kip was provided by Raul
>
>     ishermitian =: -: +@|:
>    ]K=:hermy=. (([: <: [: +: 0 ?@$~ ,~) j. [: <: [: +: 0 ?@$~ ,~) 3
>  0.681691j_0.530679    0.105724j0.221189  0.140368j_0.982508
> _0.469356j_0.623093     0.71661j0.893344  _0.125895j0.532656
> _0.882974j_0.727597 0.0632899j_0.0448332 _0.975941j_0.730788
>    hft =: + +@|:@(- ] * =@i.@#)  NB.  Kip
>    ishermitian hft K
> 0
>    hft=: (+ +@|: * >/~@i.@#) NB. Ai
>    ishermitian hft K
> 0
>    hft=: (% 1 + =@i.@#)@:+ +@|:  NB. Raul
>    ishermitian hft K
> 1
>    hft=:((23 b.&.(a.&i.)&.(2&(3!:5))&.+. +@|:)) NB. Henry
>    ishermitian hft K
> 0
>    hft=: 0&=`(,: +@|:)}
>    ishermitian hft K
> 0
>
> Linda
>
>
> -----Original Message-----
> From: programming-boun...@forums.jsoftware.com
> [mailto:programming-boun...@forums.jsoftware.com] On Behalf Of Henry Rich
> Sent: Tuesday, January 15, 2013 6:21 PM
> To: programm...@jsoftware.com
> Subject: Re: [Jprogramming] Hermitian from triangular
>
> Nah, that's not beyond impish.  The devilish solution is to take the
> bitwise
> OR of the matrix with its conjugate transpose (but that's easier in
> assembler language than in J:
> (23 b.&.(a.&i.)&.(2&(3!:5))&.+. +@|:))
> ).  And you need to be sure that the zeros on the lower diagonal and below
> are true zeros!
>
> Henry Rich
>
> On 1/15/2013 6:03 PM, km wrote:
> > Oh, boy!  (v1`v2) } y <--> (v1 y) } (v2 y)
> >
> > Brief and devilish, take care for your soul, Henry!
> >
> > --Kip
> >
> > Sent from my iPad
> >
> >
> > On Jan 15, 2013, at 3:39 PM, Henry Rich <henryhr...@nc.rr.com> wrote:
> >
> >>    hft =: 0&=`(,: +@|:)}
> >>
> >> Henry Rich
> >>
> >> On 1/15/2013 5:25 AM, km wrote:
> >>> This is an easy one.  A Hermitian matrix matches its conjugate
> transpose.  Write a verb hft that creates a Hermitian matrix from a
> triangular one that has a real diagonal.
> >>>
> >>>      ishermitian =: -: +@|:
> >>>      ]A =: 2 2 $ 1 2j3 0 4
> >>>   1 2j3
> >>>   0   4
> >>>      ]B =: hft A
> >>>      1 2j3
> >>>   2j_3   4
> >>>      ishermitian A
> >>>   0
> >>>      ishermitian B
> >>>   1
> >>>
> >>> Kip Murray
> >>>
> >>> Sent from my iPad
> >>> --------------------------------------------------------------------
> >>> -- For information about J forums see
> >>> http://www.jsoftware.com/forums.htm
> >> ---------------------------------------------------------------------
> >> - For information about J forums see
> >> http://www.jsoftware.com/forums.htm
> > ----------------------------------------------------------------------
> > For information about J forums see http://www.jsoftware.com/forums.htm
> >
> ----------------------------------------------------------------------
> For information about J forums see http://www.jsoftware.com/forums.htm
>
> ----------------------------------------------------------------------
> For information about J forums see http://www.jsoftware.com/forums.htm
>



-- 
Devon McCormick, CFA
^me^ at acm.
org is my
preferred e-mail
----------------------------------------------------------------------
For information about J forums see http://www.jsoftware.com/forums.htm

Reply via email to